These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 36350633)
1. PARP1 proximity proteomics reveals interaction partners at stressed replication forks. Mosler T; Baymaz HI; Gräf JF; Mikicic I; Blattner G; Bartlett E; Ostermaier M; Piccinno R; Yang J; Voigt A; Gatti M; Pellegrino S; Altmeyer M; Luck K; Ahel I; Roukos V; Beli P Nucleic Acids Res; 2022 Nov; 50(20):11600-11618. PubMed ID: 36350633 [TBL] [Abstract][Full Text] [Related]
2. The dynamics and regulation of PARP1 and PARP2 in response to DNA damage and during replication. Zhang H; Zha S DNA Repair (Amst); 2024 Aug; 140():103690. PubMed ID: 38823186 [TBL] [Abstract][Full Text] [Related]
3. Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection. Rageul J; Lo N; Phi AL; Patel JA; Park JJ; Kim H Cell Rep; 2024 Mar; 43(3):113845. PubMed ID: 38393943 [TBL] [Abstract][Full Text] [Related]
4. Histone ADP-ribosylation promotes resistance to PARP inhibitors by facilitating PARP1 release from DNA lesions. Zentout S; Imburchia V; Chapuis C; Duma L; Schützenhofer K; Prokhorova E; Ahel I; Smith R; Huet S Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2322689121. PubMed ID: 38865276 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3. Richards F; Llorca-Cardenosa MJ; Langton J; Buch-Larsen SC; Shamkhi NF; Sharma AB; Nielsen ML; Lakin ND Nat Commun; 2023 Jul; 14(1):4310. PubMed ID: 37463936 [TBL] [Abstract][Full Text] [Related]
6. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Kanev PB; Atemin A; Stoynov S; Aleksandrov R Semin Oncol; 2024; 51(1-2):2-18. PubMed ID: 37714792 [TBL] [Abstract][Full Text] [Related]
7. Replication fork stability confers chemoresistance in BRCA-deficient cells. Ray Chaudhuri A; Callen E; Ding X; Gogola E; Duarte AA; Lee JE; Wong N; Lafarga V; Calvo JA; Panzarino NJ; John S; Day A; Crespo AV; Shen B; Starnes LM; de Ruiter JR; Daniel JA; Konstantinopoulos PA; Cortez D; Cantor SB; Fernandez-Capetillo O; Ge K; Jonkers J; Rottenberg S; Sharan SK; Nussenzweig A Nature; 2016 Jul; 535(7612):382-7. PubMed ID: 27443740 [TBL] [Abstract][Full Text] [Related]
8. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Genois MM; Gagné JP; Yasuhara T; Jackson J; Saxena S; Langelier MF; Ahel I; Bedford MT; Pascal JM; Vindigni A; Poirier GG; Zou L Mol Cell; 2021 Feb; 81(4):784-800.e8. PubMed ID: 33412112 [TBL] [Abstract][Full Text] [Related]
9. Revisiting PARP2 and PARP1 trapping through quantitative live-cell imaging. Zhang H; Lin X; Zha S Biochem Soc Trans; 2022 Aug; 50(4):1169-1177. PubMed ID: 35959996 [TBL] [Abstract][Full Text] [Related]
10. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways. Ghosh R; Roy S; Kamyab J; Danzter F; Franco S DNA Repair (Amst); 2016 Sep; 45():56-62. PubMed ID: 27373144 [TBL] [Abstract][Full Text] [Related]
11. The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands. Ahmad T; Kawasumi R; Taniguchi T; Abe T; Terada K; Tsuda M; Shimizu N; Tsurimoto T; Takeda S; Hirota K Nucleic Acids Res; 2023 Dec; 51(22):12288-12302. PubMed ID: 37944988 [TBL] [Abstract][Full Text] [Related]
12. Mitotic functions of poly(ADP-ribose) polymerases. Slade D Biochem Pharmacol; 2019 Sep; 167():33-43. PubMed ID: 30910692 [TBL] [Abstract][Full Text] [Related]
13. The oncoprotein DEK affects the outcome of PARP1/2 inhibition during mild replication stress. Ganz M; Vogel C; Czada C; Jörke V; Gwosch EC; Kleiner R; Pierzynska-Mach A; Zanacchi FC; Diaspro A; Kappes F; Bürkle A; Ferrando-May E PLoS One; 2019; 14(8):e0213130. PubMed ID: 31408463 [TBL] [Abstract][Full Text] [Related]
14. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma. Gill SJ; Travers J; Pshenichnaya I; Kogera FA; Barthorpe S; Mironenko T; Richardson L; Benes CH; Stratton MR; McDermott U; Jackson SP; Garnett MJ PLoS One; 2015; 10(10):e0140988. PubMed ID: 26505995 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic insight into the role of Poly(ADP-ribosyl)ation in DNA topology modulation and response to DNA damage. Matkarimov BT; Zharkov DO; Saparbaev MK Mutagenesis; 2020 Feb; 35(1):107-118. PubMed ID: 31782485 [TBL] [Abstract][Full Text] [Related]
17. The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Gatti M; Imhof R; Huang Q; Baudis M; Altmeyer M Cell Rep; 2020 Aug; 32(5):107985. PubMed ID: 32755579 [TBL] [Abstract][Full Text] [Related]
18. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Shao Z; Lee BJ; Rouleau-Turcotte É; Langelier MF; Lin X; Estes VM; Pascal JM; Zha S Nucleic Acids Res; 2020 Sep; 48(17):9694-9709. PubMed ID: 32890402 [TBL] [Abstract][Full Text] [Related]
19. Phosphatase 1 Nuclear Targeting Subunit Mediates Recruitment and Function of Poly (ADP-Ribose) Polymerase 1 in DNA Repair. Wang F; Zhu S; Fisher LA; Wang L; Eurek NJ; Wahl JK; Lan L; Peng A Cancer Res; 2019 May; 79(10):2526-2535. PubMed ID: 30733193 [TBL] [Abstract][Full Text] [Related]
20. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks. Rozacky J; Nemec AA; Sweasy JB; Kidane D Oncotarget; 2015 Sep; 6(27):24474-87. PubMed ID: 26090616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]