BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36350935)

  • 1. Expression analysis of phosphate induced genes in contrasting maize genotypes for phosphorus use efficiency.
    Vasconcelos MJV; Figueiredo JEF; Oliveira MF; Parentoni SN; Marriel IE; Raghothama KG
    Braz J Biol; 2022; 82():e261797. PubMed ID: 36350935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional responses of maize seedling root to phosphorus starvation.
    Lin HJ; Gao J; Zhang ZM; Shen YO; Lan H; Liu L; Xiang K; Zhao M; Zhou S; Zhang YZ; Gao SB; Pan GT
    Mol Biol Rep; 2013 Sep; 40(9):5359-79. PubMed ID: 23670044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).
    Tian H; Drijber RA; Li X; Miller DN; Wienhold BJ
    Mycorrhiza; 2013 Aug; 23(6):507-14. PubMed ID: 23467773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize.
    Wang X; Yuan D; Liu Y; Liang Y; He J; Yang X; Hang R; Jia H; Mo B; Tian F; Chen X; Liu L
    Plant Cell; 2023 May; 35(6):2208-2231. PubMed ID: 36943781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes.
    Pei L; Jin Z; Li K; Yin H; Wang J; Yang A
    Plant Physiol Biochem; 2013 Sep; 70():221-34. PubMed ID: 23792878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling.
    Luo B; Ma P; Nie Z; Zhang X; He X; Ding X; Feng X; Lu Q; Ren Z; Lin H; Wu Y; Shen Y; Zhang S; Wu L; Liu D; Pan G; Rong T; Gao S
    Plant J; 2019 Mar; 97(5):947-969. PubMed ID: 30472798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The
    Du Q; Wang K; Zou C; Xu C; Li WX
    Plant Physiol; 2018 Aug; 177(4):1743-1753. PubMed ID: 29967097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize.
    Wu F; Yahaya BS; Gong Y; He B; Gou J; He Y; Li J; Kang Y; Xu J; Wang Q; Feng X; Tang Q; Liu Y; Lu Y
    PLoS Genet; 2024 Feb; 20(2):e1011135. PubMed ID: 38315718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation in root traits identifies significant SNPs and candidate genes for phosphate deficiency tolerance in Zea mays L.
    Rajput P; Urfan M; Sharma S; Hakla HR; Nandan B; Das R; Roychowdhury R; Chowdhary SP
    Physiol Plant; 2024; 176(3):e14396. PubMed ID: 38887929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling.
    Zhang K; Liu H; Song J; Wu W; Li K; Zhang J
    BMC Plant Biol; 2016 Jun; 16(1):129. PubMed ID: 27277671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.).
    Li K; Xu C; Fan W; Zhang H; Hou J; Yang A; Zhang K
    Plant Physiol Biochem; 2014 Oct; 83():232-42. PubMed ID: 25190054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative physiological and proteomic response to phosphate deficiency between two wheat genotypes differing in phosphorus utilization efficiency.
    Zheng L; Wang R; Zhou P; Pan Y; Shen R; Lan P
    J Proteomics; 2023 May; 280():104894. PubMed ID: 37024075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).
    Nagy R; Vasconcelos MJ; Zhao S; McElver J; Bruce W; Amrhein N; Raghothama KG; Bucher M
    Plant Biol (Stuttg); 2006 Mar; 8(2):186-97. PubMed ID: 16547863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants.
    Xu Y; Liu F; Han G; Cheng B
    Plant Cell Rep; 2018 May; 37(5):711-726. PubMed ID: 29396709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes.
    Aziz T; Finnegan PM; Lambers H; Jost R
    Plant Cell Environ; 2014 Apr; 37(4):943-60. PubMed ID: 24191900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Transcriptome and Proteome Analysis of Maize (
    Nie Z; Luo B; Zhang X; Wu L; Liu D; Guo J; He X; Gao D; Gao S; Gao S
    Curr Issues Mol Biol; 2021 Sep; 43(2):1142-1155. PubMed ID: 34563050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.