BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36351471)

  • 1. Evaluation of Sclerotinia sclerotiorum MTCC 8785 as a biological agent for the synthesis of silver nanoparticles and assessment of their antifungal potential against Trichoderma harzianum MTCC 801.
    Saxena J; Ayushi KM
    Environ Res; 2023 Jan; 216(Pt 3):114752. PubMed ID: 36351471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties.
    Saxena J; Sharma PK; Sharma MM; Singh A
    Springerplus; 2016; 5(1):861. PubMed ID: 27386310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities.
    Wang D; Xue B; Wang L; Zhang Y; Liu L; Zhou Y
    Sci Rep; 2021 May; 11(1):10356. PubMed ID: 33990673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Biogenically Efficient Synthesis of Silver Nanoparticles Using the Fungus
    El-Ashmony RMS; Zaghloul NSS; Milošević M; Mohany M; Al-Rejaie SS; Abdallah Y; Galal AA
    J Fungi (Basel); 2022 Jun; 8(6):. PubMed ID: 35736080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum.
    Guilger-Casagrande M; Germano-Costa T; Pasquoto-Stigliani T; Fraceto LF; Lima R
    Sci Rep; 2019 Oct; 9(1):14351. PubMed ID: 31586116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ameliorated Antibacterial and Antioxidant Properties by
    Konappa N; Udayashankar AC; Dhamodaran N; Krishnamurthy S; Jagannath S; Uzma F; Pradeep CK; De Britto S; Chowdappa S; Jogaiah S
    Biomolecules; 2021 Apr; 11(4):. PubMed ID: 33916555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum.
    Guilger-Casagrande M; Germano-Costa T; Bilesky-José N; Pasquoto-Stigliani T; Carvalho L; Fraceto LF; de Lima R
    J Nanobiotechnology; 2021 Feb; 19(1):53. PubMed ID: 33627148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria.
    Omran BA; Nassar HN; Younis SA; Fatthallah NA; Hamdy A; El-Shatoury EH; El-Gendy NS
    J Appl Microbiol; 2019 Jan; 126(1):138-154. PubMed ID: 30199141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity.
    Guilger M; Pasquoto-Stigliani T; Bilesky-Jose N; Grillo R; Abhilash PC; Fraceto LF; Lima R
    Sci Rep; 2017 Mar; 7():44421. PubMed ID: 28300141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-synthesis and characterization of silver nanoparticles from Trichoderma species against cassava root rot disease.
    Thepbandit W; Papathoti NK; Hoang NH; Siriwong S; Sangpueak R; Saengchan C; Laemchiab K; Kiddeejing D; Tonpho K; Buensanteai K
    Sci Rep; 2024 May; 14(1):12535. PubMed ID: 38821999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic synthesis of silver nanoparticles mediated by the consortium comprising the marine fungal filtrates of Penicillium oxalicum and Fusarium hainanense along with their antimicrobial, antioxidant, larvicidal and anticancer potency.
    Thakor R; Mistry H; Patel H; Jhala D; Parmar N; Bariya H
    J Appl Microbiol; 2022 Aug; 133(2):857-869. PubMed ID: 35505632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens.
    Consolo VF; Torres-Nicolini A; Alvarez VA
    Sci Rep; 2020 Nov; 10(1):20499. PubMed ID: 33235262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi.
    Ammar HA; El-Desouky TA
    J Appl Microbiol; 2016 Jul; 121(1):89-100. PubMed ID: 27002915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium.
    Neethu S; Midhun SJ; Sunil MA; Soumya S; Radhakrishnan EK; Jyothis M
    J Photochem Photobiol B; 2018 Mar; 180():175-185. PubMed ID: 29453129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens.
    Mishra S; Singh BR; Naqvi AH; Singh HB
    Sci Rep; 2017 Mar; 7():45154. PubMed ID: 28345581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycosynthesis of Silver Nanoparticles Using Screened
    Tomah AA; Alamer ISA; Li B; Zhang JZ
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33008115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virulency of novel nanolarvicide from Trichoderma atroviride against Aedes aegypti (Linn.): a CLSM analysis.
    Singh G; Prakash S
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12559-65. PubMed ID: 25907629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity.
    Khan S; Singh S; Gaikwad S; Nawani N; Junnarkar M; Pawar SV
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27221-27233. PubMed ID: 31065983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sunlight-Mediated Green Synthesis of Silver Nanoparticles Using the Berries of
    Rizwana H; Alwhibi MS; Al-Judaie RA; Aldehaish HA; Alsaggabi NS
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal potentiality of mycogenic silver nanoparticles capped with chitosan produced by endophytic
    Saeed Al-Zahrani S; Mohammed Al-Garni S
    Saudi J Biol Sci; 2023 Sep; 30(9):103746. PubMed ID: 37645687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.