These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36351756)

  • 1. Carbon Nanotubes-Based Nanofluidic Devices: Fabrication, Property and Application.
    Zhou H; Li W; Yu P
    ChemistryOpen; 2022 Nov; 11(11):e202200126. PubMed ID: 36351756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanofluidics of rapid water transport for energy applications.
    Park HG; Jung Y
    Chem Soc Rev; 2014 Jan; 43(2):565-76. PubMed ID: 24141359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges.
    Guo S; Meshot ER; Kuykendall T; Cabrini S; Fornasiero F
    Adv Mater; 2015 Oct; 27(38):5726-37. PubMed ID: 26037895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nanochannel dimension on the transport of water molecules.
    Su J; Guo H
    J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes.
    Velioğlu S; Karahan HE; Goh K; Bae TH; Chen Y; Chew JW
    Small; 2020 Jun; 16(25):e1907575. PubMed ID: 32432833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio simulations of the effects of nanoscale confinement on proton transfer in hydrophobic environments.
    Habenicht BF; Paddison SJ
    J Phys Chem B; 2011 Sep; 115(37):10826-35. PubMed ID: 21830811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous water transport in narrow-diameter carbon nanotubes.
    Wan Z; Gao Y; Chen X; Zeng XC; Francisco JS; Zhu C
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2211348119. PubMed ID: 36122221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation of oxidized multi-walled carbon nanotubes: Interplay of nanomaterial surface O-functional groups and solution chemistry factors.
    Xia T; Guo X; Lin Y; Xin B; Li S; Yan N; Zhu L
    Environ Pollut; 2019 Aug; 251():921-929. PubMed ID: 31234258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes.
    Wang JL; Ren KF; Chang H; Zhang SM; Jin LJ; Ji J
    Phys Chem Chem Phys; 2014 Feb; 16(7):2936-43. PubMed ID: 24424685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy and the driving force for the filling of carbon nanotubes with water.
    Pascal TA; Goddard WA; Jung Y
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11794-8. PubMed ID: 21709268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Origin of Water Flow through Carbon Nanotubes.
    Su J; Yang K
    Chemphyschem; 2015 Nov; 16(16):3488-92. PubMed ID: 26346506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanoparticles supported on carbon nanotube carpets: influence of surface functionalization.
    Karumuri AK; Oswal DP; Hostetler HA; Mukhopadhyay SM
    Nanotechnology; 2016 Apr; 27(14):145603. PubMed ID: 26916727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Structured Water Layers on Protein Adsorption Process: A Case Study of Cytochrome
    Zhang C; Li X; Wang Z; Huang X; Ge Z; Hu B
    J Phys Chem B; 2020 Jan; 124(4):684-694. PubMed ID: 31880460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes.
    Huang LL; Shao Q; Lu LH; Lu XH; Zhang LZ; Wang J; Jiang SY
    Phys Chem Chem Phys; 2006 Sep; 8(33):3836-44. PubMed ID: 19817043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of arginine in mediating protein-carbon nanotube interactions.
    Wu E; Coppens MO; Garde S
    Langmuir; 2015 Feb; 31(5):1683-92. PubMed ID: 25575129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why are carbon nanotubes fast transporters of water?
    Joseph S; Aluru NR
    Nano Lett; 2008 Feb; 8(2):452-8. PubMed ID: 18189436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water and Ion Transfer to Narrow Carbon Nanotubes: Roles of Exterior and Interior.
    Neklyudov V; Freger V
    J Phys Chem Lett; 2021 Jan; 12(1):185-190. PubMed ID: 33325707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.