These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 36351830)

  • 1. Recent Advances at the Interface of Neuroscience and Artificial Neural Networks.
    Cohen Y; Engel TA; Langdon C; Lindsay GW; Ott T; Peters MAK; Shine JM; Breton-Provencher V; Ramaswamy S
    J Neurosci; 2022 Nov; 42(45):8514-8523. PubMed ID: 36351830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research.
    Macpherson T; Churchland A; Sejnowski T; DiCarlo J; Kamitani Y; Takahashi H; Hikida T
    Neural Netw; 2021 Dec; 144():603-613. PubMed ID: 34649035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroscience-Inspired Artificial Intelligence.
    Hassabis D; Kumaran D; Summerfield C; Botvinick M
    Neuron; 2017 Jul; 95(2):245-258. PubMed ID: 28728020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural population geometry: An approach for understanding biological and artificial neural networks.
    Chung S; Abbott LF
    Curr Opin Neurobiol; 2021 Oct; 70():137-144. PubMed ID: 34801787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrastructural intelligence: Contemporary entanglements between neuroscience and AI.
    Bruder J
    Prog Brain Res; 2017; 233():101-128. PubMed ID: 28826509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MotorNet, a Python toolbox for controlling differentiable biomechanical effectors with artificial neural networks.
    Codol O; Michaels JA; Kashefi M; Pruszynski JA; Gribble PL
    Elife; 2024 Jul; 12():. PubMed ID: 39078880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grounding neuroscience in behavioral changes using artificial neural networks.
    Lindsay GW
    Curr Opin Neurobiol; 2024 Feb; 84():102816. PubMed ID: 38052111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Informing deep neural networks by multiscale principles of neuromodulatory systems.
    Mei J; Muller E; Ramaswamy S
    Trends Neurosci; 2022 Mar; 45(3):237-250. PubMed ID: 35074219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a Less Artificial Intelligence.
    Sinz FH; Pitkow X; Reimer J; Bethge M; Tolias AS
    Neuron; 2019 Sep; 103(6):967-979. PubMed ID: 31557461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing behavioral diversity to understand neural computations for cognition.
    Musall S; Urai AE; Sussillo D; Churchland AK
    Curr Opin Neurobiol; 2019 Oct; 58():229-238. PubMed ID: 31670073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of Artificial Intelligence and Neuroscience towards the Diagnosis of Neurological Disorders-A Scoping Review.
    Surianarayanan C; Lawrence JJ; Chelliah PR; Prakash E; Hewage C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. If deep learning is the answer, what is the question?
    Saxe A; Nelli S; Summerfield C
    Nat Rev Neurosci; 2021 Jan; 22(1):55-67. PubMed ID: 33199854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks and neuroscience-inspired computer vision.
    Cox DD; Dean T
    Curr Biol; 2014 Sep; 24(18):R921-R929. PubMed ID: 25247371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence and reconfiguration of modular structure for artificial neural networks during continual familiarity detection.
    Gu S; Mattar MG; Tang H; Pan G
    Sci Adv; 2024 Jul; 10(30):eadm8430. PubMed ID: 39058783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From lazy to rich to exclusive task representations in neural networks and neural codes.
    Farrell M; Recanatesi S; Shea-Brown E
    Curr Opin Neurobiol; 2023 Dec; 83():102780. PubMed ID: 37757585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent mechanisms of evidence integration in recurrent neural networks.
    Quax S; van Gerven M
    PLoS One; 2018; 13(10):e0205676. PubMed ID: 30325970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta-control: From psychology to computational neuroscience.
    Eppinger B; Goschke T; Musslick S
    Cogn Affect Behav Neurosci; 2021 Jun; 21(3):447-452. PubMed ID: 34081267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.