These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36351905)

  • 1. Southern Ocean biogenic blooms freezing-in Oligocene colder climates.
    Hochmuth K; Whittaker JM; Sauermilch I; Klocker A; Gohl K; LaCasce JH
    Nat Commun; 2022 Nov; 13(1):6785. PubMed ID: 36351905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.
    Goldner A; Herold N; Huber M
    Nature; 2014 Jul; 511(7511):574-7. PubMed ID: 25079555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.
    Martínez-Botí MA; Marino G; Foster GL; Ziveri P; Henehan MJ; Rae JW; Mortyn PG; Vance D
    Nature; 2015 Feb; 518(7538):219-22. PubMed ID: 25673416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.
    Merico A; Tyrrell T; Wilson PA
    Nature; 2008 Apr; 452(7190):979-82. PubMed ID: 18432242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terrestrial cooling in Northern Europe during the eocene-oligocene transition.
    Hren MT; Sheldon ND; Grimes ST; Collinson ME; Hooker JJ; Bugler M; Lohmann KC
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7562-7. PubMed ID: 23610424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.
    Jaccard SL; Galbraith ED; Martínez-García A; Anderson RF
    Nature; 2016 Feb; 530(7589):207-10. PubMed ID: 26840491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 40-million-year history of atmospheric CO(2).
    Zhang YG; Pagani M; Liu Z; Bohaty SM; Deconto R
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2001):20130096. PubMed ID: 24043869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO
    Rae JWB; Burke A; Robinson LF; Adkins JF; Chen T; Cole C; Greenop R; Li T; Littley EFM; Nita DC; Stewart JA; Taylor BJ
    Nature; 2018 Oct; 562(7728):569-573. PubMed ID: 30356182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massive ocean carbon sink spotted burping CO
    Tollefson J
    Nature; 2018 Dec; 564(7736):311-312. PubMed ID: 30563975
    [No Abstract]   [Full Text] [Related]  

  • 11. Polar oceans in a changing climate.
    Barnes DKA; Tarling GA
    Curr Biol; 2017 Jun; 27(11):R454-R460. PubMed ID: 28586678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The polar ocean and glacial cycles in atmospheric CO(2) concentration.
    Sigman DM; Hain MP; Haug GH
    Nature; 2010 Jul; 466(7302):47-55. PubMed ID: 20596012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2.
    DeConto RM; Pollard D
    Nature; 2003 Jan; 421(6920):245-9. PubMed ID: 12529638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No extreme bipolar glaciation during the main Eocene calcite compensation shift.
    Edgar KM; Wilson PA; Sexton PF; Suganuma Y
    Nature; 2007 Aug; 448(7156):908-11. PubMed ID: 17713530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eocene cooling linked to early flow across the Tasmanian Gateway.
    Bijl PK; Bendle JA; Bohaty SM; Pross J; Schouten S; Tauxe L; Stickley CE; McKay RM; Röhl U; Olney M; Sluijs A; Escutia C; Brinkhuis H;
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9645-50. PubMed ID: 23720311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centennial-scale changes in the global carbon cycle during the last deglaciation.
    Marcott SA; Bauska TK; Buizert C; Steig EJ; Rosen JL; Cuffey KM; Fudge TJ; Severinghaus JP; Ahn J; Kalk ML; McConnell JR; Sowers T; Taylor KC; White JW; Brook EJ
    Nature; 2014 Oct; 514(7524):616-9. PubMed ID: 25355363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mean global ocean temperatures during the last glacial transition.
    Bereiter B; Shackleton S; Baggenstos D; Kawamura K; Severinghaus J
    Nature; 2018 Jan; 553(7686):39-44. PubMed ID: 29300008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.
    Pound MJ; Salzmann U
    Sci Rep; 2017 Feb; 7():43386. PubMed ID: 28233862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies.
    Scher HD; Whittaker JM; Williams SE; Latimer JC; Kordesch WE; Delaney ML
    Nature; 2015 Jul; 523(7562):580-3. PubMed ID: 26223626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.