These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36352224)

  • 21. Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants.
    Turner SL; Ray A
    Nature; 2009 Sep; 461(7261):277-81. PubMed ID: 19710651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A combined perceptual, physico-chemical, and imaging approach to 'odour-distances' suggests a categorizing function of the Drosophila antennal lobe.
    Niewalda T; Völler T; Eschbach C; Ehmer J; Chou WC; Timme M; Fiala A; Gerber B
    PLoS One; 2011; 6(9):e24300. PubMed ID: 21931676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegypti L.) in response to plumes of carbon dioxide and human skin odour.
    Dekker T; Cardé RT
    J Exp Biol; 2011 Oct; 214(Pt 20):3480-94. PubMed ID: 21957112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural dynamics for landmark orientation and angular path integration.
    Seelig JD; Jayaraman V
    Nature; 2015 May; 521(7551):186-91. PubMed ID: 25971509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Navigational strategies used by insects to find distant, wind-borne sources of odor.
    Cardé RT; Willis MA
    J Chem Ecol; 2008 Jul; 34(7):854-66. PubMed ID: 18581182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forty years of olfactory navigation in birds.
    Gagliardo A
    J Exp Biol; 2013 Jun; 216(Pt 12):2165-71. PubMed ID: 23720797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual Control of Walking Speed in Drosophila.
    Creamer MS; Mano O; Clark DA
    Neuron; 2018 Dec; 100(6):1460-1473.e6. PubMed ID: 30415994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies.
    Álvarez-Salvado E; Licata AM; Connor EG; McHugh MK; King BM; Stavropoulos N; Victor JD; Crimaldi JP; Nagel KI
    Elife; 2018 Aug; 7():. PubMed ID: 30129438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Random convergence of olfactory inputs in the Drosophila mushroom body.
    Caron SJ; Ruta V; Abbott LF; Axel R
    Nature; 2013 May; 497(7447):113-7. PubMed ID: 23615618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Head-Mounted Ethanol Sensors to Monitor Olfactory Information and Determine Behavioral Changes Associated with Ethanol-Plume Contact during Mouse Odor-Guided Navigation.
    Tariq MF; Lewis SM; Lowell A; Moore S; Miles JT; Perkel DJ; Gire DH
    eNeuro; 2021; 8(1):. PubMed ID: 33419862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of odour plume structure on upwind flight of mosquitoes towards hosts.
    Geier M; Bosch OJ; Boeckh J
    J Exp Biol; 1999 Jun; 202 (Pt 12)():1639-48. PubMed ID: 10333509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial information from the odour environment in mammalian olfaction.
    Marin AC; Schaefer AT; Ackels T
    Cell Tissue Res; 2021 Jan; 383(1):473-483. PubMed ID: 33515294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping the effects of ozone pollution and mixing on floral odour plumes and their impact on plant-pollinator interactions.
    Langford B; Ryalls JMW; Mullinger NJ; Hayden P; Nemitz E; Pfrang C; Robins A; Touhami D; Bromfield LM; Girling RD
    Environ Pollut; 2023 Nov; 336():122336. PubMed ID: 37595729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neural circuit for wind-guided olfactory navigation.
    Matheson AMM; Lanz AJ; Medina AM; Licata AM; Currier TA; Syed MH; Nagel KI
    Nat Commun; 2022 Aug; 13(1):4613. PubMed ID: 35941114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Information-theoretic analysis of realistic odor plumes: What cues are useful for determining location?
    Boie SD; Connor EG; McHugh M; Nagel KI; Ermentrout GB; Crimaldi JP; Victor JD
    PLoS Comput Biol; 2018 Jul; 14(7):e1006275. PubMed ID: 29990365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with GPS data loggers.
    Gagliardo A; Ioalè P; Filannino C; Wikelski M
    PLoS One; 2011; 6(8):e22385. PubMed ID: 21857925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active antennal movements in Drosophila can tune wind encoding.
    Suver MP; Medina AM; Nagel KI
    Curr Biol; 2023 Feb; 33(4):780-789.e4. PubMed ID: 36731464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A balance between aerodynamic and olfactory performance during flight in Drosophila.
    Li C; Dong H; Zhao K
    Nat Commun; 2018 Aug; 9(1):3215. PubMed ID: 30097572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wind Gates Olfaction Driven Search States in Free Flight.
    Stupski SD; van Breugel F
    bioRxiv; 2024 Jul; ():. PubMed ID: 38076971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial maps in piriform cortex during olfactory navigation.
    Poo C; Agarwal G; Bonacchi N; Mainen ZF
    Nature; 2022 Jan; 601(7894):595-599. PubMed ID: 34937941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.