These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36352328)

  • 21. Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater.
    Gayathri R; Gopinath KP; Kumar PS
    Chemosphere; 2021 Jan; 262():128031. PubMed ID: 33182077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An ecofriendly approach for bioremediation of contaminated water environment: Potential contribution of a coastal seaweed community to environmental improvement.
    Deniz F; Ersanli ET
    Int J Phytoremediation; 2018 Feb; 20(3):256-263. PubMed ID: 29053345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oil palm biomass as an adsorbent for heavy metals.
    Vakili M; Rafatullah M; Ibrahim MH; Abdullah AZ; Salamatinia B; Gholami Z
    Rev Environ Contam Toxicol; 2014; 232():61-88. PubMed ID: 24984835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From waste to waste: iron blast furnace slag for heavy metal ions removal from aqueous system.
    Abdelbasir SM; Khalek MAA
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57964-57979. PubMed ID: 35355191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioremoval of heavy metals by bacterial biomass.
    Aryal M; Liakopoulou-Kyriakides M
    Environ Monit Assess; 2015 Jan; 187(1):4173. PubMed ID: 25471624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water.
    Sulejmanović J; Memić M; Šehović E; Omanović R; Begić S; Pazalja M; Ajanović A; Azhar O; Sher F
    Chemosphere; 2022 Jun; 296():133971. PubMed ID: 35182527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient removal of heavy metals by endophytic bacteria Staphylococcus succinus H3.
    Luo H; Yang C; Pang M; Wang Y; Cheng W; Jiang K; Ling L
    J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosorbents for heavy metals removal and their future.
    Wang J; Chen C
    Biotechnol Adv; 2009; 27(2):195-226. PubMed ID: 19103274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents.
    de Freitas GR; da Silva MGC; Vieira MGA
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19097-19118. PubMed ID: 31104247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agricultural by-products as low-cost sorbents for the removal of heavy metals from dilute wastewaters.
    Humelnicu D; Ignat M; Doroftei F
    Environ Monit Assess; 2015 May; 187(5):222. PubMed ID: 25832011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling and efficiency evaluation of the continuous biosorption of Cu(II) and Cr(VI) from water by agricultural waste materials.
    Blagojev N; Vasić V; Kukić D; Šćiban M; Prodanović J; Bera O
    J Environ Manage; 2021 Mar; 281():111876. PubMed ID: 33418386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosorption kinetics of heavy metals by leaf biomass of Jatropha curcas in single and multi-metal system.
    Rawat AP; Giri K; Rai JP
    Environ Monit Assess; 2014 Mar; 186(3):1679-87. PubMed ID: 24150716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosorption of heavy metals: Transferability between batch and column studies.
    Pathirana C; Ziyath AM; Egodawatta P; Bandara NJGJ; Jinadasa KBSN; Bandala ER; Wijesiri B; Goonetilleke A
    Chemosphere; 2022 May; 294():133659. PubMed ID: 35063551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treatment of electroplating industry wastewater: a review on the various techniques.
    Rajoria S; Vashishtha M; Sangal VK
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72196-72246. PubMed ID: 35084684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater.
    Pavithra S; Thandapani G; S S; P N S; Alkhamis HH; Alrefaei AF; Almutairi MH
    Chemosphere; 2021 May; 271():129415. PubMed ID: 33460901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Cd
    Xu S; Xing Y; Liu S; Hao X; Chen W; Huang Q
    Chemosphere; 2020 Feb; 240():124893. PubMed ID: 31550585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater.
    Sulaymon AH; Ebrahim SE; Mohammed-Ridha MJ
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):175-87. PubMed ID: 22427177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isotherm models for adsorption of heavy metals from water - A review.
    Chen X; Hossain MF; Duan C; Lu J; Tsang YF; Islam MS; Zhou Y
    Chemosphere; 2022 Nov; 307(Pt 1):135545. PubMed ID: 35787879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A systematic study for removal of heavy metals from aqueous media using Sorghum bicolor: an efficient biosorbent.
    Naseem K; Farooqi ZH; Ur Rehman MZ; Ur Rehman MA; Begum R; Huma R; Shahbaz A; Najeeb J; Irfan A
    Water Sci Technol; 2018 Jun; 77(9-10):2355-2368. PubMed ID: 29893724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal.
    Gümüş D
    Int J Phytoremediation; 2019; 21(6):556-563. PubMed ID: 30729808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.