These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 36353142)
1. Manganese-based Prussian blue nanoparticles inhibit tumor proliferation and migration Tong S; Yu Z; Yin F; Yang Q; Chu J; Huang L; Gao W; Qian M Front Chem; 2022; 10():1026924. PubMed ID: 36353142 [TBL] [Abstract][Full Text] [Related]
2. Manganese-Based Prussian Blue Nanocatalysts Suppress Non-Small Cell Lung Cancer Growth and Metastasis Fang D; Liu Z; Jin H; Huang X; Shi Y; Ben S Front Bioeng Biotechnol; 2022; 10():939158. PubMed ID: 35814022 [TBL] [Abstract][Full Text] [Related]
3. Mn doped Prussian blue nanoparticles for T Tao Q; He G; Ye S; Zhang D; Zhang Z; Qi L; Liu R J Nanobiotechnology; 2022 Jan; 20(1):18. PubMed ID: 34983564 [TBL] [Abstract][Full Text] [Related]
4. Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Chen Z; Li Z; Li C; Huang H; Ren Y; Li Z; Hu Y; Guo W Drug Deliv; 2022 Dec; 29(1):1201-1211. PubMed ID: 35403518 [TBL] [Abstract][Full Text] [Related]
5. Dual chemodynamic/photothermal therapeutic nanoplatform based on DNA-functionalized prussian blue. Zeng Q; Jiang X; Chen M; Deng C; Li D; Wu H Bioorg Chem; 2024 Feb; 143():106981. PubMed ID: 37995645 [TBL] [Abstract][Full Text] [Related]
6. Chiral Cu Liu Y; Li H; Li S; Zhang X; Xiong J; Jiang F; Liu Y; Jiang P ACS Appl Mater Interfaces; 2021 Dec; 13(51):60933-60944. PubMed ID: 34923825 [TBL] [Abstract][Full Text] [Related]
7. PPy@Fe Fang D; Jin H; Huang X; Shi Y; Liu Z; Ben S Front Chem; 2021; 9():789934. PubMed ID: 34820358 [TBL] [Abstract][Full Text] [Related]
8. Prussian blue-modified ferritin nanoparticles for effective tumor chemo-photothermal combination therapy via enhancing reactive oxygen species production. Li H; Zhang W; Ding L; Li XW; Wu Y; Tang JH J Biomater Appl; 2019 Apr; 33(9):1202-1213. PubMed ID: 30714472 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of cancer cell migration with CuS@ mSiO Deng G; Zhou F; Wu Z; Zhang F; Niu K; Kang Y; Liu X; Wang Q; Wang Y; Wang Q Int J Nanomedicine; 2018; 13():103-116. PubMed ID: 29317819 [TBL] [Abstract][Full Text] [Related]
10. Engineering of small molecular organic nanoparticles for mitochondria-targeted mild photothermal therapy of malignant breast cancers. Hu Q; He C; Lu Z; He Y; Xie H; Li J; Fu Z; Guo B Biomater Sci; 2022 Oct; 10(20):6013-6023. PubMed ID: 36069330 [TBL] [Abstract][Full Text] [Related]
11. Glucose/Glutathione Co-triggered Tumor Hypoxia Relief and Chemodynamic Therapy to Enhance Photothermal Therapy in Bladder Cancer. Chen WH; Yu KJ; Jhou JW; Pang HH; Weng WH; Lin WS; Yang HW ACS Appl Bio Mater; 2021 Oct; 4(10):7485-7496. PubMed ID: 35006706 [TBL] [Abstract][Full Text] [Related]
12. H Yu Y; Zhang L; Wang M; Yang Z; Lin L; Xiong Y; Xu Z; Wang J Nanomedicine (Lond); 2019 Aug; 14(16):2189-2207. PubMed ID: 31411542 [No Abstract] [Full Text] [Related]
13. Multifunctional MnO Wang Q; Qu B; Li J; Liu Y; Dong J; Peng X; Zhang R ACS Appl Mater Interfaces; 2022 Feb; 14(4):4980-4994. PubMed ID: 35050589 [TBL] [Abstract][Full Text] [Related]
14. Fe-Doped Polyoxometalate as Acid-Aggregated Nanoplatform for NIR-II Photothermal-Enhanced Chemodynamic Therapy. Shi Y; Zhang J; Huang H; Cao C; Yin J; Xu W; Wang W; Song X; Zhang Y; Dong X Adv Healthc Mater; 2020 May; 9(9):e2000005. PubMed ID: 32181991 [TBL] [Abstract][Full Text] [Related]
15. A biodegradable "Nano-donut" for magnetic resonance imaging and enhanced chemo/photothermal/chemodynamic therapy through responsive catalysis in tumor microenvironment. Guan S; Liu X; Fu Y; Li C; Wang J; Mei Q; Deng G; Zheng W; Wan Z; Lu J J Colloid Interface Sci; 2022 Feb; 608(Pt 1):344-354. PubMed ID: 34626980 [TBL] [Abstract][Full Text] [Related]
16. Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. Chen Q; Luo Y; Du W; Liu Z; Zhang S; Yang J; Yao H; Liu T; Ma M; Chen H ACS Appl Mater Interfaces; 2019 May; 11(20):18133-18144. PubMed ID: 31046230 [TBL] [Abstract][Full Text] [Related]
17. An Organic Nanotherapeutic Agent Self-Assembled from Cyanine and Cu (II) for Combined Photothermal and Chemodynamic Therapy. Li X; Xi D; Yang M; Sun W; Peng X; Fan J Adv Healthc Mater; 2021 Oct; 10(20):e2101008. PubMed ID: 34515401 [TBL] [Abstract][Full Text] [Related]
18. A biomimetic nanoenzyme for starvation therapy enhanced photothermal and chemodynamic tumor therapy. Xu K; Wu X; Cheng Y; Yan J; Feng Y; Chen R; Zheng R; Li X; Song P; Wang Y; Zhang H Nanoscale; 2020 Nov; 12(45):23159-23165. PubMed ID: 33200159 [TBL] [Abstract][Full Text] [Related]
19. A core-shell Au@Cu Zhang L; Jiang C; Li B; Liu Z; Gu B; He S; Li P; Sun Y; Song S J Nanobiotechnology; 2021 Dec; 19(1):410. PubMed ID: 34876141 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition. Hao Y; Mao L; Zhang R; Liao X; Yuan M; Liao W ACS Appl Bio Mater; 2021 Sep; 4(9):7081-7093. PubMed ID: 35006940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]