These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36353156)
1. Actions to reduce carbon footprint in materials to healthcare buildings. Carrasco-Amador JP; Canito-Lobo JL; Castaño-Liberal A; Rodríguez-Rego JM; Matamoros-Pacheco M Heliyon; 2022 Nov; 8(11):e11281. PubMed ID: 36353156 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings. Petersdorff C; Boermans T; Harnisch J Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030 [TBL] [Abstract][Full Text] [Related]
3. Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland. Rinne R; Ilgın HE; Karjalainen M Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055595 [TBL] [Abstract][Full Text] [Related]
4. Advanced Carbon Reinforced Concrete Technologies for Façade Elements of Nearly Zero-Energy Buildings. Kraft R; Kahnt A; Grauer O; Thieme M; Wolz DS; Schlüter D; Tietze M; Curbach M; Holschemacher K; Jäger H; Böhm R Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208159 [TBL] [Abstract][Full Text] [Related]
5. Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis. Liu Z; Li P; Wang F; Osmani M; Demian P Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36232118 [TBL] [Abstract][Full Text] [Related]
6. Carbon and water footprint analysis of pig farm buildings in Northeast China using building-information-modeling enabled assessment. Si B; Wang C; Cheng S; Ma X; Xu W; Wang Z; Li B; Wang Y; Shi Z; Jiang W Sci Total Environ; 2023 Aug; 888():164088. PubMed ID: 37201854 [TBL] [Abstract][Full Text] [Related]
7. Comparative life cycle assessment of light frame timber and reinforced concrete masonry structural systems for single-family houses in Luxembourg. Eslami H; Yaghma A; Jayasinghe LB; Waldmann D Heliyon; 2024 Feb; 10(4):e26083. PubMed ID: 38390173 [TBL] [Abstract][Full Text] [Related]
8. Net-Zero Embodied Carbon in Buildings with Today's Available Technologies. Watari T; Yamashita N; Serrenho AC Environ Sci Technol; 2024 Jan; 58(4):1793-1801. PubMed ID: 38228319 [TBL] [Abstract][Full Text] [Related]
9. Prediction of carbon emissions peak and carbon neutrality based on life cycle CO Xin L; Li S; Rene ER; Lun X; Zhang P; Ma W Environ Res; 2023 Dec; 238(Pt 1):117160. PubMed ID: 37717801 [TBL] [Abstract][Full Text] [Related]
10. Life comparative analysis of energy consumption and CO₂ emissions of different building structural frame types. Kim S; Moon JH; Shin Y; Kim GH; Seo DS ScientificWorldJournal; 2013; 2013():175702. PubMed ID: 24227998 [TBL] [Abstract][Full Text] [Related]
11. Bamboo construction materials: Carbon storage and potential to reduce associated CO Xu X; Xu P; Zhu J; Li H; Xiong Z Sci Total Environ; 2022 Mar; 814():152697. PubMed ID: 34974007 [TBL] [Abstract][Full Text] [Related]
12. Impact of concrete durability improvement on building life cycle carbon emissions: a case study of residential buildings in Northwest China. Zhu X; Liu Z; Zhang Y; Qiao H; Zhou Q Environ Sci Pollut Res Int; 2024 Oct; 31(47):57804-57821. PubMed ID: 39292304 [TBL] [Abstract][Full Text] [Related]
13. A sustainable mathematical model for design of net zero energy buildings. Delavar H; Sahebi H Heliyon; 2020 Jan; 6(1):e03190. PubMed ID: 31956715 [TBL] [Abstract][Full Text] [Related]
14. The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements. Gregory J; AzariJafari H; Vahidi E; Guo F; Ulm FJ; Kirchain R Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34493648 [TBL] [Abstract][Full Text] [Related]
15. Substitution impacts of Nordic wood-based multi-story building types: influence of the decarbonization of the energy sector and increased recycling of construction materials. Myllyviita T; Hurmekoski E; Kunttu J Carbon Balance Manag; 2022 May; 17(1):4. PubMed ID: 35581405 [TBL] [Abstract][Full Text] [Related]
16. The carbon footprint of the Chinese health-care system: an environmentally extended input-output and structural path analysis study. Wu R Lancet Planet Health; 2019 Oct; 3(10):e413-e419. PubMed ID: 31625513 [TBL] [Abstract][Full Text] [Related]
17. Developing a dynamic life cycle assessment framework for buildings through integrating building information modeling and building energy modeling program. Yang T; Dong Y; Tang B; Xu Z Sci Total Environ; 2024 Oct; 946():174284. PubMed ID: 38942319 [TBL] [Abstract][Full Text] [Related]
18. Data on roof renovation and photovoltaic energy production including energy storage in existing residential buildings. D'Agostino D; Parker D; Melià P; Dotelli G Data Brief; 2022 Apr; 41():107874. PubMed ID: 35141376 [TBL] [Abstract][Full Text] [Related]
19. Green buildings model: Impact of rigid polyurethane foam on indoor environment and sustainable development in energy sector. Alsuhaibani AM; Refat MS; Qaisrani SA; Jamil F; Abbas Z; Zehra A; Baluch K; Kim JG; Mubeen M Heliyon; 2023 Mar; 9(3):e14451. PubMed ID: 36950602 [TBL] [Abstract][Full Text] [Related]
20. Thermal performance evaluation of bio-bricks and conventional bricks in residential buildings in Aswan city, Egypt. Abd El-Hady RE; Mohamed AFA Sci Rep; 2023 Sep; 13(1):15993. PubMed ID: 37749115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]