These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36353298)

  • 1. A new class of efficient and debiased two-step shrinkage estimators: method and application.
    Qasim M; Månsson K; Sjölander P; Kibria BMG
    J Appl Stat; 2022; 49(16):4181-4205. PubMed ID: 36353298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new Poisson Liu Regression Estimator: method and application.
    Qasim M; Kibria BMG; Månsson K; Sjölander P
    J Appl Stat; 2020; 47(12):2258-2271. PubMed ID: 35706835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new class of Poisson Ridge-type estimator.
    Ertan E; Akay KU
    Sci Rep; 2023 Mar; 13(1):4968. PubMed ID: 36973310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified Liu estimators in the linear regression model: An application to Tobacco data.
    Babar I; Ayed H; Chand S; Suhail M; Khan YA; Marzouki R
    PLoS One; 2021; 16(11):e0259991. PubMed ID: 34807916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new linearized ridge Poisson estimator in the presence of multicollinearity.
    Jadhav NH
    J Appl Stat; 2022; 49(8):2016-2034. PubMed ID: 35757596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On a Mixed Poisson Liu Regression Estimator for Overdispersed and Multicollinear Count Data.
    Tharshan R; Wijekoon P
    ScientificWorldJournal; 2022; 2022():8171461. PubMed ID: 36097508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New ridge parameter estimators for the quasi-Poisson ridge regression model.
    Shahzad A; Amin M; Emam W; Faisal M
    Sci Rep; 2024 Apr; 14(1):8489. PubMed ID: 38605090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified ridge-type for the Poisson regression model: simulation and application.
    Lukman AF; Aladeitan B; Ayinde K; Abonazel MR
    J Appl Stat; 2022; 49(8):2124-2136. PubMed ID: 35757586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some Shrinkage estimators based on median ranked set sampling.
    Ebegil M; Özdemir YA; Gökpinar F
    J Appl Stat; 2021; 48(13-15):2473-2498. PubMed ID: 35707105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Almost unbiased modified ridge-type estimator: An application to tourism sector data in Egypt.
    Omara TM
    Heliyon; 2022 Sep; 8(9):e10684. PubMed ID: 36193526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbiased K-L estimator for the linear regression model.
    Aladeitan B; Lukman AF; Davids E; Oranye EH; Kibria GBM
    F1000Res; 2021; 10():832. PubMed ID: 35186270
    [No Abstract]   [Full Text] [Related]  

  • 12. Biased Adjusted Poisson Ridge Estimators-Method and Application.
    Qasim M; Månsson K; Amin M; Golam Kibria BM; Sjölander P
    Iran J Sci Technol Trans A Sci; 2020; 44(6):1775-1789. PubMed ID: 33041601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Ridge-Type Estimator for the Gamma Regression Model.
    Lukman AF; Dawoud I; Kibria BMG; Algamal ZY; Aladeitan B
    Scientifica (Cairo); 2021; 2021():5545356. PubMed ID: 34249382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ridge Regression Method and Bayesian Estimators under Composite LINEX Loss Function to Estimate the Shape Parameter in Lomax Distribution.
    Yassen MF; Al-Duais FS; Almazah MMA
    Comput Intell Neurosci; 2022; 2022():1200611. PubMed ID: 36072714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new alternative estimation method for Liu-type logistic estimator via particle swarm optimization: an application to data of collapse of Turkish commercial banks during the Asian financial crisis.
    Sancar N; Inan D
    J Appl Stat; 2021; 48(13-15):2499-2514. PubMed ID: 35707083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications.
    Kibria BMG; Lukman AF
    Scientifica (Cairo); 2020; 2020():9758378. PubMed ID: 32399315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model.
    Lukman AF; Ayinde K; Golam Kibria BM; Jegede SL
    ScientificWorldJournal; 2020; 2020():3192852. PubMed ID: 32508537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new estimator for the multicollinear Poisson regression model: simulation and application.
    Lukman AF; Adewuyi E; Månsson K; Kibria BMG
    Sci Rep; 2021 Feb; 11(1):3732. PubMed ID: 33580148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bootstrap-quantile ridge estimator for linear regression with applications.
    Dar IS; Chand S
    PLoS One; 2024; 19(4):e0302221. PubMed ID: 38683865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new robust ridge parameter estimator based on search method for linear regression model.
    Göktaş A; Akkuş Ö; Kuvat A
    J Appl Stat; 2021; 48(13-15):2457-2472. PubMed ID: 35707080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.