These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. An efficient numerical approach for singularly perturbed time delayed parabolic problems with two-parameters. Daba IT; Melesse WG; Gelu FW; Kebede GD BMC Res Notes; 2024 Jun; 17(1):158. PubMed ID: 38845043 [TBL] [Abstract][Full Text] [Related]
23. H(infinity) filtering for fuzzy singularly perturbed systems. Yang GH; Dong J IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1371-89. PubMed ID: 18784018 [TBL] [Abstract][Full Text] [Related]
24. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions. Cengizci S; Atay MT; Eryılmaz A Springerplus; 2016; 5():280. PubMed ID: 27006888 [TBL] [Abstract][Full Text] [Related]
25. Spline-in-compression approximation of order of accuracy three (four) for second order non-linear IVPs on a graded mesh. Mohanty RK; Ghosh BP MethodsX; 2023 Dec; 11():102308. PubMed ID: 37601291 [TBL] [Abstract][Full Text] [Related]
26. Asymptotic bounds for the time-periodic solutions to the singularly perturbed ordinary differential equations. Amiraliyev GM; Ucar A ScientificWorldJournal; 2013; 2013():301609. PubMed ID: 24369452 [TBL] [Abstract][Full Text] [Related]
27. Is exponential stability achievable in singular perturbed delayed systems with time-varying parameters? A comprehensive analysis. Chen R; Ouyang M; Zhang J; Masoudinia F Heliyon; 2024 Mar; 10(6):e27424. PubMed ID: 38515658 [TBL] [Abstract][Full Text] [Related]
28. Error Analysis of a PFEM Based on the Euler Semi-Implicit Scheme for the Unsteady MHD Equations. Shi K; Su H; Feng X Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420415 [TBL] [Abstract][Full Text] [Related]
29. Hinfinity fuzzy control design for nonlinear singularly perturbed systems with pole placement constraints: an LMI approach. Assawinchaichote W; Nguang SK IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):579-88. PubMed ID: 15369094 [TBL] [Abstract][Full Text] [Related]
30. On numerical solution of boundary layer flow of viscous incompressible fluid past an inclined stretching sheet in porous medium and heat transfer using spline technique. Begum T; Manchanda G; Khan A; Ahmad N MethodsX; 2023; 10():102035. PubMed ID: 36798835 [TBL] [Abstract][Full Text] [Related]
31. Identification and Control for Singularly Perturbed Systems Using Multitime-Scale Neural Networks. Zheng D; Xie WF; Ren X; Na J IEEE Trans Neural Netw Learn Syst; 2017 Feb; 28(2):321-333. PubMed ID: 26742148 [TBL] [Abstract][Full Text] [Related]
32. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations. Zhang L J Inequal Appl; 2017; 2017(1):249. PubMed ID: 29070932 [TBL] [Abstract][Full Text] [Related]
33. Koopman analysis of the singularly perturbed van der Pol oscillator. Katayama N; Susuki Y Chaos; 2024 Sep; 34(9):. PubMed ID: 39312730 [TBL] [Abstract][Full Text] [Related]
34. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics. Dumbser M; Balsara DS; Tavelli M; Fambri F Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284 [TBL] [Abstract][Full Text] [Related]
35. A 6-point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems. Mustafa G; Baleanu D; Ejaz ST; Anjum K; Ahmadian A; Salahshour S; Ferrara M Math Biosci Eng; 2020 Sep; 17(6):6659-6677. PubMed ID: 33378870 [TBL] [Abstract][Full Text] [Related]
36. Ordinary differential equations with applications in molecular biology. Ilea M; Turnea M; Rotariu M Rev Med Chir Soc Med Nat Iasi; 2012; 116(1):347-52. PubMed ID: 23077920 [TBL] [Abstract][Full Text] [Related]
37. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems. Nagarale RM; Patre BM ISA Trans; 2014 May; 53(3):679-89. PubMed ID: 24636524 [TBL] [Abstract][Full Text] [Related]
38. An efficient spline technique for solving time-fractional integro-differential equations. Abbas M; Aslam S; Abdullah FA; Riaz MB; Gepreel KA Heliyon; 2023 Sep; 9(9):e19307. PubMed ID: 37810099 [TBL] [Abstract][Full Text] [Related]
39. Numerical solution of a third-order Falkner-Skan-like equation arising in boundary layer theory. Attili B Chaos; 2020 Jul; 30(7):073119. PubMed ID: 32752618 [TBL] [Abstract][Full Text] [Related]
40. High order approximation on non-uniform meshes for generalized time-fractional telegraph equation. Sultana F; Pandey RK; Singh D; Agrawal OP MethodsX; 2022; 9():101905. PubMed ID: 36405364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]