These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 36353883)

  • 1. Van der Waals-Interface-Dominated All-2D Electronics.
    Zhang X; Zhang Y; Yu H; Zhao H; Cao Z; Zhang Z; Zhang Y
    Adv Mater; 2023 Dec; 35(50):e2207966. PubMed ID: 36353883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures.
    Xu C; Ding Y; Wang S; Cao S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123182. PubMed ID: 37517268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials.
    Gao H; Wang Z; Cao J; Lin YC; Ling X
    ACS Nano; 2024 Jul; 18(26):16343-16358. PubMed ID: 38899467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications.
    Zhang G; Wu H; Zhang L; Yang L; Xie Y; Guo F; Li H; Tao B; Wang G; Zhang W; Chang H
    Small; 2022 Nov; 18(47):e2204380. PubMed ID: 36135779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic/Optoelectronic Memory Device Enabled by Tellurium-based 2D van der Waals Heterostructure for in-Sensor Reservoir Computing at the Optical Communication Band.
    Zha J; Shi S; Chaturvedi A; Huang H; Yang P; Yao Y; Li S; Xia Y; Zhang Z; Wang W; Wang H; Wang S; Yuan Z; Yang Z; He Q; Tai H; Teo EHT; Yu H; Ho JC; Wang Z; Zhang H; Tan C
    Adv Mater; 2023 May; 35(20):e2211598. PubMed ID: 36857506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Preparation of High Quality Bubble-Free and Uniform Conducting Interfaces of Vertical van der Waals Heterostructures of Arrays.
    Chen J; Liu L; Chen H; Xu N; Deng S
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10877-10885. PubMed ID: 38360529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer.
    Boandoh S; Agyapong-Fordjour FO; Choi SH; Lee JS; Park JH; Ko H; Han G; Yun SJ; Park S; Kim YM; Yang W; Lee YH; Kim SM; Kim KK
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1579-1586. PubMed ID: 30525400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics.
    Kim J; Rhee D; Song O; Kim M; Kwon YH; Lim DU; Kim IS; Mazánek V; Valdman L; Sofer Z; Cho JH; Kang J
    Adv Mater; 2022 Mar; 34(12):e2106110. PubMed ID: 34933395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy.
    Li X; Lin MW; Lin J; Huang B; Puretzky AA; Ma C; Wang K; Zhou W; Pantelides ST; Chi M; Kravchenko I; Fowlkes J; Rouleau CM; Geohegan DB; Xiao K
    Sci Adv; 2016 Apr; 2(4):e1501882. PubMed ID: 27152356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics.
    Kim KK; Lee HS; Lee YH
    Chem Soc Rev; 2018 Aug; 47(16):6342-6369. PubMed ID: 30043784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition Metal Dichalcogenides (TMDCs) Heterostructures: Synthesis, Excitons and Photoelectric Properties.
    Fan J; Sun M
    Chem Rec; 2022 Jun; 22(6):e202100313. PubMed ID: 35452180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Ultrathin Hafnium Oxide with a Clean van der Waals Interface for Two-Dimensional Sandwich Heterostructure Electronics.
    Jing Y; Dai X; Yang J; Zhang X; Wang Z; Liu X; Li H; Yuan Y; Zhou X; Luo H; Zhang D; Sun J
    Nano Lett; 2024 Apr; 24(13):3937-3944. PubMed ID: 38526847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Van der Waals Ferroelectrics: Theories, Materials, and Device Applications.
    Li S; Wang F; Wang Y; Yang J; Wang X; Zhan X; He J; Wang Z
    Adv Mater; 2024 May; 36(22):e2301472. PubMed ID: 37363893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach.
    Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically Active MXenes in Van der Waals Heterostructures.
    Purbayanto MAK; Chandel M; Birowska M; Rosenkranz A; Jastrzębska AM
    Adv Mater; 2023 Oct; 35(42):e2301850. PubMed ID: 37715336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges.
    Pham PV; Bodepudi SC; Shehzad K; Liu Y; Xu Y; Yu B; Duan X
    Chem Rev; 2022 Mar; 122(6):6514-6613. PubMed ID: 35133801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer.
    Cho SB; Chung YC
    Sci Rep; 2016 Jun; 6():27986. PubMed ID: 27301777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-Dependent Transport at 2D Solids: From Nonmagnetic Layers to Ferromagnetic van der Waals Structures.
    Liu Y; Guo Y; Wu C; Xie Y
    J Phys Chem Lett; 2021 Oct; 12(39):9730-9740. PubMed ID: 34590853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
    Lee JY; Shin JH; Lee GH; Lee CH
    Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures.
    Choi EM; Sim KI; Burch KS; Lee YH
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200186. PubMed ID: 35596612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.