These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Highly Stable Liquid Metal Conductors with Superior Electrical Stability and Tough Interface Bonding for Stretchable Electronics. Wang S; Liu C; Liu J; Li S; Xu F; Xu D; Zhang W; Wu Y; Shang J; Liu Y; Li RW ACS Appl Mater Interfaces; 2023 May; 15(18):22291-22300. PubMed ID: 37127569 [TBL] [Abstract][Full Text] [Related]
3. Printable Self-Activated Liquid Metal Stretchable Conductors from Polyvinylpyrrolidone-Functionalized Eutectic Gallium Indium Composites. Jo Y; Hwang JH; Lee SS; Lee SY; Kim YS; Kim DG; Choi Y; Jeong S ACS Appl Mater Interfaces; 2022 Mar; 14(8):10747-10757. PubMed ID: 35099918 [TBL] [Abstract][Full Text] [Related]
4. Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquid-Metal Particles. Wang J; Cai G; Li S; Gao D; Xiong J; Lee PS Adv Mater; 2018 Apr; 30(16):e1706157. PubMed ID: 29512208 [TBL] [Abstract][Full Text] [Related]
5. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Ma Z; Huang Q; Xu Q; Zhuang Q; Zhao X; Yang Y; Qiu H; Yang Z; Wang C; Chai Y; Zheng Z Nat Mater; 2021 Jun; 20(6):859-868. PubMed ID: 33603185 [TBL] [Abstract][Full Text] [Related]
6. Graded Mxene-Doped Liquid Metal as Adhesion Interface Aiming for Conductivity Enhancement of Hybrid Rigid-Soft Interconnection. Li M; Chen D; Deng X; Xu B; Li M; Liang H; Wang M; Song G; Zhang T; Liu Y ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36893387 [TBL] [Abstract][Full Text] [Related]
7. Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices. Tang L; Cheng S; Zhang L; Mi H; Mou L; Yang S; Huang Z; Shi X; Jiang X iScience; 2018 Jun; 4():302-311. PubMed ID: 30240749 [TBL] [Abstract][Full Text] [Related]
8. A Highly Stretchable and Permeable Liquid Metal Micromesh Conductor by Physical Deposition for Epidermal Electronics. Li Y; Wang S; Zhang J; Ma X; Cao S; Sun Y; Feng S; Fang T; Kong D ACS Appl Mater Interfaces; 2022 Mar; 14(11):13713-13721. PubMed ID: 35262322 [TBL] [Abstract][Full Text] [Related]
9. Stretchable One-Dimensional Conductors for Wearable Applications. Nie M; Li B; Hsieh YL; Fu KK; Zhou J ACS Nano; 2022 Dec; 16(12):19810-19839. PubMed ID: 36475644 [TBL] [Abstract][Full Text] [Related]
10. Self-Assembly Enabled Printable Asymmetric Self-Insulated Stretchable Conductor for Human Interface. Ahmed S; Momin M; Ren J; Lee H; Zhou T Adv Mater; 2024 Jun; 36(25):e2400082. PubMed ID: 38563579 [TBL] [Abstract][Full Text] [Related]
11. Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. Chen G; Wang H; Guo R; Duan M; Zhang Y; Liu J ACS Appl Mater Interfaces; 2020 Feb; 12(5):6112-6118. PubMed ID: 31941273 [TBL] [Abstract][Full Text] [Related]
12. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Lee W; Kim H; Kang I; Park H; Jung J; Lee H; Park H; Park JS; Yuk JM; Ryu S; Jeong JW; Kang J Science; 2022 Nov; 378(6620):637-641. PubMed ID: 36356149 [TBL] [Abstract][Full Text] [Related]
13. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Liu S; Shah DS; Kramer-Bottiglio R Nat Mater; 2021 Jun; 20(6):851-858. PubMed ID: 33603186 [TBL] [Abstract][Full Text] [Related]
14. Flexible-to-Stretchable Mechanical and Electrical Interconnects. Erlenbach S; Mondal K; Ma J; Neumann TV; Ma S; Holbery JD; Dickey MD ACS Appl Mater Interfaces; 2023 Feb; 15(4):6005-6012. PubMed ID: 36599089 [TBL] [Abstract][Full Text] [Related]
15. Dual-Functional Self-Attachable and Stretchable Interface for Universal Three-Dimensional Modular Electronics. Oh JY; Hwang CS; Yang YS; Song M; Kim J; Kim TS; Kim S; Oh H; Kang SY; Pi JE; Koo JB; Park CW; Lee H ACS Appl Mater Interfaces; 2022 Nov; 14(43):49303-49312. PubMed ID: 36241609 [TBL] [Abstract][Full Text] [Related]
16. Maskless Fabrication of Highly Conductive and Ultrastretchable Liquid Metal Features through Selective Laser Activation. Hu G; Zhu H; Guo H; Wang S; Sun Y; Zhang J; Lin Y; Kong D ACS Appl Mater Interfaces; 2023 Jun; 15(23):28675-28683. PubMed ID: 37270696 [TBL] [Abstract][Full Text] [Related]
17. Strain-Insensitive Stretchable Fiber Conductors Based on Highly Conductive Buckled Shells for Wearable Electronics. Yoon K; Lee S; Shim D; Lee M; Cho S; Kwon C; Won C; Lee S; Lee J; Jung HH; Jang KI; Lee J; Lee T ACS Appl Mater Interfaces; 2023 Apr; 15(14):18281-18289. PubMed ID: 36989129 [TBL] [Abstract][Full Text] [Related]
18. Mechanical Gradients Enable Highly Stretchable Electronics Based on Nanofiber Substrates. Wang M; Wang K; Ma C; Uzabakiriho PC; Chen X; Zhao G ACS Appl Mater Interfaces; 2022 Aug; 14(31):35997-36006. PubMed ID: 35894160 [TBL] [Abstract][Full Text] [Related]
19. Ultrastretchable Conductor Fabricated on Skin-Like Hydrogel-Elastomer Hybrid Substrates for Skin Electronics. Kim SH; Jung S; Yoon IS; Lee C; Oh Y; Hong JM Adv Mater; 2018 Jun; 30(26):e1800109. PubMed ID: 29761554 [TBL] [Abstract][Full Text] [Related]
20. Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies. Ai L; Lin W; Cao C; Li P; Wang X; Lv D; Li X; Yang Z; Yao X Nat Commun; 2023 Nov; 14(1):7723. PubMed ID: 38001116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]