These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Zhao EW; Liu T; Jónsson E; Lee J; Temprano I; Jethwa RB; Wang A; Smith H; Carretero-González J; Song Q; Grey CP Nature; 2020 Mar; 579(7798):224-228. PubMed ID: 32123353 [TBL] [Abstract][Full Text] [Related]
7. Redox Species of Redox Flow Batteries: A Review. Pan F; Wang Q Molecules; 2015 Nov; 20(11):20499-517. PubMed ID: 26593894 [TBL] [Abstract][Full Text] [Related]
8. Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes. Robinson SG; Yan Y; Hendriks KH; Sanford MS; Sigman MS J Am Chem Soc; 2019 Jul; 141(26):10171-10176. PubMed ID: 31203608 [TBL] [Abstract][Full Text] [Related]
9. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. Hwang B; Park MS; Kim K ChemSusChem; 2015 Jan; 8(2):310-4. PubMed ID: 25428116 [TBL] [Abstract][Full Text] [Related]
10. Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage. Kim J; Ko S; Noh C; Kim H; Lee S; Kim D; Park H; Kwon G; Son G; Ko JW; Jung Y; Lee D; Park CB; Kang K Angew Chem Int Ed Engl; 2019 Nov; 58(47):16764-16769. PubMed ID: 31339216 [TBL] [Abstract][Full Text] [Related]
11. Interrogation of 2,2'-Bipyrimidines as Low-Potential Two-Electron Electrolytes. Griffin JD; Pancoast AR; Sigman MS J Am Chem Soc; 2021 Jan; 143(2):992-1004. PubMed ID: 33411535 [TBL] [Abstract][Full Text] [Related]
12. On the Tunability of Toxicity for Viologen-Derivatives as Anolyte for Neutral Aqueous Organic Redox Flow Batteries. de la Parra S; Tamayo-Ramos JA; Rubio-Presa R; Perez-Antolin D; Ruiz V; Sanz R; Rumbo C; Ventosa E ChemSusChem; 2023 Dec; 16(24):e202300626. PubMed ID: 37399239 [TBL] [Abstract][Full Text] [Related]
13. Active Learning Guided Computational Discovery of Plant-Based Redoxmers for Organic Nonaqueous Redox Flow Batteries. Jain A; Shkrob IA; Doan HA; Adams K; Moore JS; Assary RS ACS Appl Mater Interfaces; 2023 Dec; 15(50):58309-58319. PubMed ID: 38071647 [TBL] [Abstract][Full Text] [Related]
14. Competitive Pi-Stacking and H-Bond Piling Increase Solubility of Heterocyclic Redoxmers. Zhao Y; Sarnello ES; Robertson LA; Zhang J; Shi Z; Yu Z; Bheemireddy SR; Z Y; Li T; Assary RS; Cheng L; Zhang Z; Zhang L; Shkrob IA J Phys Chem B; 2020 Nov; 124(46):10409-10418. PubMed ID: 33158362 [TBL] [Abstract][Full Text] [Related]
15. Aqueous Solubility of Organic Compounds for Flow Battery Applications: Symmetry and Counter Ion Design to Avoid Low-Solubility Polymorphs. Garcia SN; Yang X; Bereczki L; Kónya D Molecules; 2021 Feb; 26(5):. PubMed ID: 33668137 [TBL] [Abstract][Full Text] [Related]
16. Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials. Boivin E; Chotard JN; Masquelier C; Croguennec L Molecules; 2021 Mar; 26(5):. PubMed ID: 33800777 [TBL] [Abstract][Full Text] [Related]
17. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. Kong T; Li J; Wang W; Zhou X; Xie Y; Ma J; Li X; Wang Y ACS Appl Mater Interfaces; 2024 Jan; 16(1):752-760. PubMed ID: 38132704 [TBL] [Abstract][Full Text] [Related]