These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36354121)

  • 1. Six-electron organic redoxmers for aqueous redox flow batteries.
    Fang X; Cavazos AT; Li Z; Li C; Xie J; Wassall SR; Zhang L; Wei X
    Chem Commun (Camb); 2022 Nov; 58(95):13226-13229. PubMed ID: 36354121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.
    Farag NL; Jethwa RB; Beardmore AE; Insinna T; O'Keefe CA; Klusener PAA; Grey CP; Wright DS
    ChemSusChem; 2023 Jul; 16(13):e202300128. PubMed ID: 36970847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid Redoxmers for Nonaqueous Redox Flow Batteries.
    Robertson LA; Afsar Uddin M; Shkrob IA; Moore JS; Zhang L
    ChemSusChem; 2023 Jul; 16(14):e202300043. PubMed ID: 36943787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for Nonaqueous Redox Flow Batteries.
    Bheemireddy SR; Li Z; Zhang J; Agarwal G; Robertson LA; Shkrob IA; Assary RS; Zhang Z; Wei X; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28834-28841. PubMed ID: 35709493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques.
    Modak SV; Shen W; Singh S; Herrera D; Oudeif F; Goldsmith BR; Huan X; Kwabi DG
    Nat Commun; 2023 Jun; 14(1):3602. PubMed ID: 37328467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ NMR metrology reveals reaction mechanisms in redox flow batteries.
    Zhao EW; Liu T; Jónsson E; Lee J; Temprano I; Jethwa RB; Wang A; Smith H; Carretero-González J; Song Q; Grey CP
    Nature; 2020 Mar; 579(7798):224-228. PubMed ID: 32123353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox Species of Redox Flow Batteries: A Review.
    Pan F; Wang Q
    Molecules; 2015 Nov; 20(11):20499-517. PubMed ID: 26593894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes.
    Robinson SG; Yan Y; Hendriks KH; Sanford MS; Sigman MS
    J Am Chem Soc; 2019 Jul; 141(26):10171-10176. PubMed ID: 31203608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.
    Hwang B; Park MS; Kim K
    ChemSusChem; 2015 Jan; 8(2):310-4. PubMed ID: 25428116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage.
    Kim J; Ko S; Noh C; Kim H; Lee S; Kim D; Park H; Kwon G; Son G; Ko JW; Jung Y; Lee D; Park CB; Kang K
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16764-16769. PubMed ID: 31339216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrogation of 2,2'-Bipyrimidines as Low-Potential Two-Electron Electrolytes.
    Griffin JD; Pancoast AR; Sigman MS
    J Am Chem Soc; 2021 Jan; 143(2):992-1004. PubMed ID: 33411535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Tunability of Toxicity for Viologen-Derivatives as Anolyte for Neutral Aqueous Organic Redox Flow Batteries.
    de la Parra S; Tamayo-Ramos JA; Rubio-Presa R; Perez-Antolin D; Ruiz V; Sanz R; Rumbo C; Ventosa E
    ChemSusChem; 2023 Dec; 16(24):e202300626. PubMed ID: 37399239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Learning Guided Computational Discovery of Plant-Based Redoxmers for Organic Nonaqueous Redox Flow Batteries.
    Jain A; Shkrob IA; Doan HA; Adams K; Moore JS; Assary RS
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58309-58319. PubMed ID: 38071647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive Pi-Stacking and H-Bond Piling Increase Solubility of Heterocyclic Redoxmers.
    Zhao Y; Sarnello ES; Robertson LA; Zhang J; Shi Z; Yu Z; Bheemireddy SR; Z Y; Li T; Assary RS; Cheng L; Zhang Z; Zhang L; Shkrob IA
    J Phys Chem B; 2020 Nov; 124(46):10409-10418. PubMed ID: 33158362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous Solubility of Organic Compounds for Flow Battery Applications: Symmetry and Counter Ion Design to Avoid Low-Solubility Polymorphs.
    Garcia SN; Yang X; Bereczki L; Kónya D
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33668137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials.
    Boivin E; Chotard JN; Masquelier C; Croguennec L
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33800777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte.
    Kong T; Li J; Wang W; Zhou X; Xie Y; Ma J; Li X; Wang Y
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):752-760. PubMed ID: 38132704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled
    Zhao EW; Jónsson E; Jethwa RB; Hey D; Lyu D; Brookfield A; Klusener PAA; Collison D; Grey CP
    J Am Chem Soc; 2021 Feb; 143(4):1885-1895. PubMed ID: 33475344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rechargeable quasi-solid state lithium battery with organic crystalline cathode.
    Hanyu Y; Honma I
    Sci Rep; 2012; 2():453. PubMed ID: 22693655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic rechargeable batteries with tailored voltage and cycle performance.
    Nishida S; Yamamoto Y; Takui T; Morita Y
    ChemSusChem; 2013 May; 6(5):794-7. PubMed ID: 23505144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.