These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36354160)

  • 1. High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus.
    Zhang G; Zhou J; Peng Y; Tan Z; Zhang Y; Zhao H; Liu D; Liu X; Li L; Yu L; Jin C; Fang S; Shi J; Geng Z; Yang S; Chen G; Liu K; Yang Q; Feng H; Guo L; Yang W
    Plant Cell Environ; 2023 Feb; 46(2):549-566. PubMed ID: 36354160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.).
    Yong HY; Wang C; Bancroft I; Li F; Wu X; Kitashiba H; Nishio T
    Planta; 2015 Jul; 242(1):313-26. PubMed ID: 25921693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Association Studies of Salt Tolerance at Seed Germination and Seedling Stages in
    Zhang G; Zhou J; Peng Y; Tan Z; Li L; Yu L; Jin C; Fang S; Lu S; Guo L; Yao X
    Front Plant Sci; 2021; 12():772708. PubMed ID: 35069628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Association Studies of Salt Tolerance at the Seed Germination Stage and Yield-Related Traits in
    Zhang Y; Li P; Zhang J; Li Y; Xu A; Huang Z
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping.
    Wassan GM; Khanzada H; Zhou Q; Mason AS; Keerio AA; Khanzada S; Solangi AM; Faheem M; Fu D; He H
    Mol Genet Genomics; 2021 Mar; 296(2):391-408. PubMed ID: 33464396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits.
    Raman H; Raman R; Kilian A; Detering F; Long Y; Edwards D; Parkin IA; Sharpe AG; Nelson MN; Larkan N; Zou J; Meng J; Aslam MN; Batley J; Cowling WA; Lydiate D
    BMC Genomics; 2013 Apr; 14():277. PubMed ID: 23617817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-wide association study (GWAS) identifies multiple loci linked with the natural variation for Al
    Du H; Raman H; Kawasaki A; Perera G; Diffey S; Snowdon R; Raman R; Ryan PR
    Funct Plant Biol; 2022 Sep; 49(10):845-860. PubMed ID: 35753342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species.
    Cai G; Yang Q; Yang Q; Zhao Z; Chen H; Wu J; Fan C; Zhou Y
    BMC Genet; 2012 Dec; 13():105. PubMed ID: 23216693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (
    Wan H; Chen L; Guo J; Li Q; Wen J; Yi B; Ma C; Tu J; Fu T; Shen J
    Front Plant Sci; 2017; 8():593. PubMed ID: 28491067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping.
    Arifuzzaman M; Oladzadabbasabadi A; McClean P; Rahman M
    Mol Genet Genomics; 2019 Aug; 294(4):985-1000. PubMed ID: 30968249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus.
    Wang B; Wu Z; Li Z; Zhang Q; Hu J; Xiao Y; Cai D; Wu J; King GJ; Li H; Liu K
    Plant Biotechnol J; 2018 Jul; 16(7):1336-1348. PubMed ID: 29265559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities.
    Shi L; Shi T; Broadley MR; White PJ; Long Y; Meng J; Xu F; Hammond JP
    Ann Bot; 2013 Jul; 112(2):381-9. PubMed ID: 23172414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Association Studies of Salt-Alkali Tolerance at Seedling and Mature Stages in
    Zhang G; Peng Y; Zhou J; Tan Z; Jin C; Fang S; Zhong S; Jin C; Wang R; Wen X; Li B; Lu S; Zhou G; Fu T; Guo L; Yao X
    Front Plant Sci; 2022; 13():857149. PubMed ID: 35574128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic mapping of a lobed-leaf gene associated with salt tolerance in Brassica napus L.
    Zhang Y; Xu A; Lang L; Wang Y; Liu X; Liang F; Zhang B; Qin M; Dalelhan J; Huang Z
    Plant Sci; 2018 Apr; 269():75-84. PubMed ID: 29606219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.
    Li L; Long Y; Zhang L; Dalton-Morgan J; Batley J; Yu L; Meng J; Li M
    PLoS One; 2015; 10(3):e0119425. PubMed ID: 25790019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.).
    Xu L; Hu K; Zhang Z; Guan C; Chen S; Hua W; Li J; Wen J; Yi B; Shen J; Ma C; Tu J; Fu T
    DNA Res; 2016 Feb; 23(1):43-52. PubMed ID: 26659471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.).
    Zhang F; Xiao X; Xu K; Cheng X; Xie T; Hu J; Wu X
    BMC Genomics; 2020 Feb; 21(1):139. PubMed ID: 32041524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping.
    Zou J; Jiang C; Cao Z; Li R; Long Y; Chen S; Meng J
    Genome; 2010 Nov; 53(11):908-16. PubMed ID: 21076506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed.
    Li H; Feng H; Guo C; Yang S; Huang W; Xiong X; Liu J; Chen G; Liu Q; Xiong L; Liu K; Yang W
    Plant Biotechnol J; 2020 Nov; 18(11):2345-2353. PubMed ID: 32367649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL mapping for cold tolerance and higher overwintering survival rate in winter rapeseed (Brassica napus).
    Liu Z; Dong X; Cao X; Xu C; Wei J; Zhen G; Wang J; Li H; Fang X; Wang Y; Yan H; Mi C; Zhao C; Mi W
    J Plant Physiol; 2022 Aug; 275():153735. PubMed ID: 35687944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.