These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 36354197)
1. High-Rate Organic Cathode Constructed by Iron-Hexaazatrinaphthalene Tricarboxylic Acid Coordination Polymer for Li-Ion Batteries. Wang Y; Qiao Z; Liu K; Yu L; Lv Y; Shi L; Zhao Y; Cao D; Wang Z; Wang S; Yuan S Adv Sci (Weinh); 2022 Dec; 9(36):e2205069. PubMed ID: 36354197 [TBL] [Abstract][Full Text] [Related]
2. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524 [TBL] [Abstract][Full Text] [Related]
3. Materials Design and Mechanistic Understanding of Tellurium and Tellurium-Sulfur Cathodes for Rechargeable Batteries. Zhang Y; Liu J Acc Chem Res; 2024 Sep; 57(17):2500-2511. PubMed ID: 39137405 [TBL] [Abstract][Full Text] [Related]
4. Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries. Zhang C; Xu Y; He K; Dong Y; Zhao H; Medenbach L; Wu Y; Balducci A; Hannappel T; Lei Y Small; 2020 Sep; 16(38):e2002953. PubMed ID: 32815290 [TBL] [Abstract][Full Text] [Related]
5. A Monocrystalline Coordination Polymer with Multiple Redox Centers as a High-Performance Cathode for Lithium-Ion Batteries. Luo Y; Liu J; Zhang L Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202209458. PubMed ID: 35899824 [TBL] [Abstract][Full Text] [Related]
6. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode. Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519 [TBL] [Abstract][Full Text] [Related]
7. A Pyrazine-Based Polymer for Fast-Charge Batteries. Mao M; Luo C; Pollard TP; Hou S; Gao T; Fan X; Cui C; Yue J; Tong Y; Yang G; Deng T; Zhang M; Ma J; Suo L; Borodin O; Wang C Angew Chem Int Ed Engl; 2019 Dec; 58(49):17820-17826. PubMed ID: 31571354 [TBL] [Abstract][Full Text] [Related]
8. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
9. A Porphyrin-Phenylalkynyl-Based Conjugated Organic Polymer as a High-Performance Cathode for Rechargeable Organic Batteries. Peng X; Zhou Y; Chen B; Cao W; Sun C; Liao Y; Huang X; Tu X; Chen Z; Liu W; Gao P ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39361519 [TBL] [Abstract][Full Text] [Related]
10. Insights into Ion Occupancy Manipulation of Fe-Co Oxide Free-Standing Cathodes for Li-O Huang Q; He B; Zhang W; Wang J; Fan Y; Mai X; Wang Y; Hou Y; Du Y; Xie P; Dang F ACS Appl Mater Interfaces; 2020 Jul; 12(27):30268-30279. PubMed ID: 32530262 [TBL] [Abstract][Full Text] [Related]
11. High-Energy Density Li-O Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667 [TBL] [Abstract][Full Text] [Related]
12. A Conjugated Coordination Polymer with Benzoquinone as Electrode Material for All Organic Symmetric Lithium-ion Batteries. Liang C; Cai X; Lin J; Chen Y; Xie Y; Liu Y Chempluschem; 2024 May; 89(5):e202300620. PubMed ID: 38052722 [TBL] [Abstract][Full Text] [Related]
13. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
14. Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density. Chong S; Yang J; Sun L; Guo S; Liu Y; Liu HK ACS Nano; 2020 Aug; 14(8):9807-9818. PubMed ID: 32709197 [TBL] [Abstract][Full Text] [Related]
15. 2D Covalent Organic Framework Covalently Anchored with Carbon Nanotube as High-Performance Cathodes for Lithium and Sodium-Ion Batteries. Biswas S; Pramanik A; Dey A; Chattopadhyay S; Pieshkov TS; Bhattacharyya S; Ajayan PM; Maji TK Small; 2024 Nov; 20(48):e2406173. PubMed ID: 39225362 [TBL] [Abstract][Full Text] [Related]
16. Improving Room-Temperature Li-Metal Battery Performance by In Situ Creation of Fast Li Yu J; Zhou G; Li Y; Wang Y; Chen D; Ciucci F Small; 2023 Sep; 19(39):e2302691. PubMed ID: 37279776 [TBL] [Abstract][Full Text] [Related]
17. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage. Yang X; Gong L; Liu X; Zhang P; Li B; Qi D; Wang K; He F; Jiang J Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202207043. PubMed ID: 35638157 [TBL] [Abstract][Full Text] [Related]
18. Stable Operation Induced by Plastic Crystal Electrolyte Used in Ni-Rich NMC811 Cathodes for Li-Ion Batteries. Jabeen M; Ren Z; Ishaq M; Yuan S; Bao X; Shu C; Liu X; Liu X; Li L; He YS; Ma ZF; Liao XZ ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37890042 [TBL] [Abstract][Full Text] [Related]
19. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698 [TBL] [Abstract][Full Text] [Related]