These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36354328)

  • 1. A tale of two fish tails: does a forked tail really perform better than a truncate tail when cruising?
    Tack NB; Gemmell BJ
    J Exp Biol; 2022 Nov; 225(22):. PubMed ID: 36354328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae).
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Jun; 205(Pt 12):1709-24. PubMed ID: 12042330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuna robotics: hydrodynamics of rapid linear accelerations.
    Thandiackal R; White CH; Bart-Smith H; Lauder GV
    Proc Biol Sci; 2021 Feb; 288(1945):20202726. PubMed ID: 33593180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airfoil-like mechanics generate thrust on the anterior body of swimming fishes.
    Lucas KN; Lauder GV; Tytell ED
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10585-10592. PubMed ID: 32341168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish without Tail Fins-Exploring the Function of Tail Morphology of the First Vertebrates.
    Rival DE; Yang W; Caron JB
    Integr Comp Biol; 2021 Jul; 61(1):37-49. PubMed ID: 33690846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
    Tytell ED; Standen EM; Lauder GV
    J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the caudal peduncle in a fish-inspired robotic model: how changing stiffness and angle of attack affects swimming performance.
    Matthews DG; Zhu R; Wang J; Dong H; Bart-Smith H; Lauder G
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36206750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance variation due to stiffness in a tuna-inspired flexible foil model.
    Rosic MN; Thornycroft PJ; Feilich KL; Lucas KN; Lauder GV
    Bioinspir Biomim; 2017 Jan; 12(1):016011. PubMed ID: 28094239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult caudal fin shape is imprinted in the embryonic fin fold.
    Surette E; Donahue J; Robinson S; McKenna D; Martinez CS; Fitzgerald B; Karlstrom RO; Cumplido N; McMenamin SK
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fish tail as a derivation from axial musculoskeletal anatomy: an integrative analysis of functional morphology.
    Flammang BE
    Zoology (Jena); 2014 Feb; 117(1):86-92. PubMed ID: 24290784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force scaling and efficiency of elongated median fin propulsion.
    Uddin MI; Garcia GA; Curet OM
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35366647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved swimming performance in schooling fish via leading-edge vortex enhancement.
    Seo JH; Mittal R
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36261046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion.
    Fish FE; Rybczynski N; Lauder GV; Duff CM
    Integr Comp Biol; 2021 Sep; 61(2):398-413. PubMed ID: 33881525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
    Li G; Liu H; Müller UK; Voesenek CJ; van Leeuwen JL
    Proc Biol Sci; 2021 Dec; 288(1964):20211601. PubMed ID: 34847768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    Zoology (Jena); 2016 Oct; 119(5):414-420. PubMed ID: 27291816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.