BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 36354375)

  • 21. Biodegradable ferroelectric molecular crystal with large piezoelectric response.
    Zhang HY; Tang YY; Gu ZX; Wang P; Chen XG; Lv HP; Li PF; Jiang Q; Gu N; Ren S; Xiong RG
    Science; 2024 Mar; 383(6690):1492-1498. PubMed ID: 38547269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface modification and property analysis of biomedical polymers used for tissue engineering.
    Ma Z; Mao Z; Gao C
    Colloids Surf B Biointerfaces; 2007 Nov; 60(2):137-57. PubMed ID: 17683921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Piezoelectric polymers as biomaterials for tissue engineering applications.
    Ribeiro C; Sencadas V; Correia DM; Lanceros-Méndez S
    Colloids Surf B Biointerfaces; 2015 Dec; 136():46-55. PubMed ID: 26355812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances on biomedical applications of pectin-containing biomaterials.
    Eivazzadeh-Keihan R; Noruzi EB; Aliabadi HAM; Sheikhaleslami S; Akbarzadeh AR; Hashemi SM; Gorab MG; Maleki A; Cohan RA; Mahdavi M; Poodat R; Keyvanlou F; Esmaeili MS
    Int J Biol Macromol; 2022 Sep; 217():1-18. PubMed ID: 35809676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradable polymers derived from amino acids.
    Khan W; Muthupandian S; Farah S; Kumar N; Domb AJ
    Macromol Biosci; 2011 Dec; 11(12):1625-36. PubMed ID: 22052719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.
    Tandon B; Blaker JJ; Cartmell SH
    Acta Biomater; 2018 Jun; 73():1-20. PubMed ID: 29673838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic approaches for tissue engineering.
    Reddy R; Reddy N
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1667-1685. PubMed ID: 29998794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications.
    Kenry ; Liu B
    Biomacromolecules; 2018 Jun; 19(6):1783-1803. PubMed ID: 29787260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polysaccharides and proteins-based nanogenerator for energy harvesting and sensing: A review.
    Cao L; Qiu X; Jiao Q; Zhao P; Li J; Wei Y
    Int J Biol Macromol; 2021 Mar; 173():225-243. PubMed ID: 33484800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative review of piezoelectric biomaterials approach for bone tissue engineering.
    Samadi A; Salati MA; Safari A; Jouyandeh M; Barani M; Singh Chauhan NP; Golab EG; Zarrintaj P; Kar S; Seidi F; Hejna A; Saeb MR
    J Biomater Sci Polym Ed; 2022 Aug; 33(12):1555-1594. PubMed ID: 35604896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manipulating the Piezoelectric Response of Amino Acid-Based Assemblies by Supramolecular Engineering.
    Wang Y; Liu S; Li L; Li H; Yin Y; Rencus-Lazar S; Guerin S; Ouyang W; Thompson D; Yang R; Cai K; Gazit E; Ji W
    J Am Chem Soc; 2023 Jul; 145(28):15331-15342. PubMed ID: 37392396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices.
    Park IW; Kim KW; Hong Y; Yoon HJ; Lee Y; Gwak D; Heo K
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement and Function of the Piezoelectric Effect in Polymer Nanofibers.
    Persano L; Ghosh SK; Pisignano D
    Acc Mater Res; 2022 Sep; 3(9):900-912. PubMed ID: 36187876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances of Poly(ester amide)s-Based Biomaterials.
    Han S; Wu J
    Biomacromolecules; 2022 May; 23(5):1892-1919. PubMed ID: 35435654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications.
    Fooladi S; Nematollahi MH; Rabiee N; Iravani S
    ACS Biomater Sci Eng; 2023 Jun; 9(6):2949-2969. PubMed ID: 37146213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomaterials Based on Chitosan and Its Derivatives and Their Potential in Tissue Engineering and Other Biomedical Applications-A Review.
    Szulc M; Lewandowska K
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine.
    Kamel NA
    Biophys Rev; 2022 Jun; 14(3):717-733. PubMed ID: 35783122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges and opportunities on vegetable oils derived systems for biomedical applications.
    Ribeiro AR; Silva SS; Reis RL
    Biomater Adv; 2022 Mar; 134():112720. PubMed ID: 35589472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides.
    Yin Q; Yin L; Wang H; Cheng J
    Acc Chem Res; 2015 Jul; 48(7):1777-87. PubMed ID: 26065588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering.
    Sultana A; Zare M; Luo H; Ramakrishna S
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.