These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36354488)

  • 1. Comparison of Optical and Electrical Sensor Characteristics for Efficient Analysis of Attachment and Detachment of Aptamer.
    Park Y; Dang TV; Jeong U; Kim MI; Kim J
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs.
    Liu X; Wang F; Aizen R; Yehezkeli O; Willner I
    J Am Chem Soc; 2013 Aug; 135(32):11832-9. PubMed ID: 23841845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free triple-helix aptamer as sensing platform for "signal-on" fluorescent detection of thrombin.
    Xu N; Wang Q; Lei J; Liu L; Ju H
    Talanta; 2015 Jan; 132():387-91. PubMed ID: 25476322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly tunable aptasensing microarrays with graphene oxide multilayers.
    Jung YK; Lee T; Shin E; Kim BS
    Sci Rep; 2013 Nov; 3():3367. PubMed ID: 24284474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein determination using graphene oxide-aptamer modified gold nanoparticles in combination with Tween 80.
    Gao L; Li Q; Li R; Deng Z; Brady B; Xia N; Chen G; Zhou Y; Xia H; Chen K; Shi H
    Anal Chim Acta; 2016 Oct; 941():80-86. PubMed ID: 27692381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP.
    Lou YF; Peng YB; Luo X; Yang Z; Wang R; Sun D; Li L; Tan Y; Huang J; Cui L
    Mikrochim Acta; 2019 Jul; 186(8):494. PubMed ID: 31267250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins.
    Wang X; Gao X; He J; Hu X; Li Y; Li X; Fan L; Yu HZ
    Analyst; 2019 Jun; 144(12):3826-3835. PubMed ID: 31090762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards detection of biomarkers in the eye using an aptamer-based graphene affinity nanobiosensor.
    Wang Z; Dai W; Yu S; Hao Z; Pei R; De Moraes CG; Suh LH; Zhao X; Lin Q
    Talanta; 2022 Dec; 250():123697. PubMed ID: 35752089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing high-affinity aptamer binding region and development of aptasensor platform for the detection of cylindrospermopsin.
    Chinnappan R; AlZabn R; Fataftah AK; Alhoshani A; Zourob M
    Anal Bioanal Chem; 2020 Jul; 412(19):4691-4701. PubMed ID: 32500257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chemiluminescence biosensor for the detection of thrombin based on the aptamer composites.
    Lin Y; Li J; Wang Y; Sun Y; Ding C; Sun W; Luo C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():153-158. PubMed ID: 29128749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.
    Gao L; Li Q; Li R; Yan L; Zhou Y; Chen K; Shi H
    Nanoscale; 2015 Jul; 7(25):10903-7. PubMed ID: 25939390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.
    Chang H; Tang L; Wang Y; Jiang J; Li J
    Anal Chem; 2010 Mar; 82(6):2341-6. PubMed ID: 20180560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer-based SERRS sensor for thrombin detection.
    Cho H; Baker BR; Wachsmann-Hogiu S; Pagba CV; Laurence TA; Lane SM; Lee LP; Tok JB
    Nano Lett; 2008 Dec; 8(12):4386-90. PubMed ID: 19367849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor.
    Datta D; Sarkar K; Mukherjee S; Meshik X; Stroscio MA; Dutta M
    Nanotechnology; 2017 Aug; 28(32):325502. PubMed ID: 28718456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin.
    Yu J; Yang L; Liang X; Dong T; Liu H
    Analyst; 2015 Jun; 140(12):4114-20. PubMed ID: 25894923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced graphene oxide as a resonance light-scattering probe for thrombin detection using dual-aptamer-based dsDNA.
    Chen F; Liu Y; Liao R; Gong H; Chen C; Chen X; Cai C
    Anal Chim Acta; 2017 Sep; 985():141-147. PubMed ID: 28864184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated [Formula: see text] probe.
    Wang XY; Gao A; Lu CC; He XW; Yin XB
    Biosens Bioelectron; 2013 Oct; 48():120-5. PubMed ID: 23665577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO.
    Sun X; Liu B; Yang C; Li C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():288-93. PubMed ID: 24835931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-Based Solution-Gated Graphene Transistors for Highly Sensitive and Real-Time Detection of Thrombin Molecules.
    Yu H; Zhao Z; Xiao B; Deng M; Wang Z; Li Z; Zhang H; Zhang L; Qian J; Li J
    Anal Chem; 2021 Oct; 93(40):13673-13679. PubMed ID: 34597019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual aptamer-immobilized surfaces for improved affinity through multiple target binding in potentiometric thrombin biosensing.
    Goda T; Higashi D; Matsumoto A; Hoshi T; Sawaguchi T; Miyahara Y
    Biosens Bioelectron; 2015 Nov; 73():174-180. PubMed ID: 26067329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.