These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36354544)

  • 1. Integrated Bioinformatics-Based Subtractive Genomics Approach to Decipher the Therapeutic Drug Target and Its Possible Intervention against Brucellosis.
    Khan K; Alhar MSO; Abbas MN; Abbas SQ; Kazi M; Khan SA; Sadiq A; Hassan SSU; Bungau S; Jalal K
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36354544
    [No Abstract]   [Full Text] [Related]  

  • 2. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of
    Abdou E; Jiménez de Bagüés MP; Martínez-Abadía I; Ouahrani-Bettache S; Pantesco V; Occhialini A; Al Dahouk S; Köhler S; Jubier-Maurin V
    Front Cell Infect Microbiol; 2017; 7():186. PubMed ID: 28573107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel drug targets for humans and potential vaccine targets for cattle by subtractive genomic analysis of Brucella abortus strain 2308.
    Mahmud A; Khan MT; Iqbal A
    Microb Pathog; 2019 Dec; 137():103731. PubMed ID: 31509762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide Core Proteome Analysis of Brucella melitensis Strains for Potential Drug Target Prediction.
    Rahman N; Shah M; Muhammad I; Khan H; Imran M
    Mini Rev Med Chem; 2021; 21(18):2778-2787. PubMed ID: 32634082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M.
    Pradeepkiran JA; Sainath SB; Kumar KK; Bhaskar M
    Drug Des Devel Ther; 2015; 9():1691-706. PubMed ID: 25834405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions.
    Kumar A; Thotakura PL; Tiwary BK; Krishna R
    BMC Microbiol; 2016 May; 16():84. PubMed ID: 27176600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics.
    He Y
    Front Cell Infect Microbiol; 2012; 2():2. PubMed ID: 22919594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN.
    He Y; Xiang Z
    Immunome Res; 2010 Sep; 6 Suppl 1(Suppl 1):S5. PubMed ID: 20875156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome Exploration of
    Khan MT; Mahmud A; Hasan M; Azim KF; Begum MK; Rolin MH; Akter A; Mondal SI
    Microbiol Spectr; 2022 Aug; 10(4):e0037322. PubMed ID: 35863001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Cross-Protective Potential Antigens against Pathogenic
    Hisham Y; Ashhab Y
    J Immunol Res; 2018; 2018():1474517. PubMed ID: 30622973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subtractive genomics profiling for potential drug targets identification against Moraxella catarrhalis.
    Ashraf B; Atiq N; Khan K; Wadood A; Uddin R
    PLoS One; 2022; 17(8):e0273252. PubMed ID: 36006987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fast-Growing
    Zúñiga-Ripa A; Barbier T; Lázaro-Antón L; de Miguel MJ; Conde-Álvarez R; Muñoz PM; Letesson JJ; Iriarte M; Moriyón I
    Front Microbiol; 2018; 9():641. PubMed ID: 29675004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence.
    Bialer MG; Ruiz-Ranwez V; Sycz G; Estein SM; Russo DM; Altabe S; Sieira R; Zorreguieta A
    Sci Rep; 2019 Feb; 9(1):2158. PubMed ID: 30770847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The innate immune response against Brucella in humans.
    Dornand J; Gross A; Lafont V; Liautard J; Oliaro J; Liautard JP
    Vet Microbiol; 2002 Dec; 90(1-4):383-94. PubMed ID: 12414158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages.
    Rajasekaran P; Alexander JC; Seleem MN; Jain N; Sriranganathan N; Wattam AR; Setubal JC; Boyle SM
    Int J Antimicrob Agents; 2013 Apr; 41(4):358-62. PubMed ID: 23305655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis.
    Godfroid J; Cloeckaert A; Liautard JP; Kohler S; Fretin D; Walravens K; Garin-Bastuji B; Letesson JJ
    Vet Res; 2005; 36(3):313-26. PubMed ID: 15845228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of potential vaccine candidates against pathogenic Brucella spp. using compositive reverse vaccinology.
    Zai X; Yin Y; Guo F; Yang Q; Li R; Li Y; Zhang J; Xu J; Chen W
    Vet Res; 2021 Jun; 52(1):75. PubMed ID: 34078437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic insights into Brucella.
    Rajendhran J
    Infect Genet Evol; 2021 Jan; 87():104635. PubMed ID: 33189905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydroartemisinin inhibits multiplication of Brucella suis vaccine strain 2 in murine microglia BV2 cells via stimulation of caspase‑dependent apoptosis.
    Yang J; Li H; Wang Z; Yu L; Liu Q; Niu X; Xu T; Wang Z
    Mol Med Rep; 2019 Nov; 20(5):4067-4072. PubMed ID: 31545433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host Prdx6 contributing to the intracellular survival of Brucella suis S2 strain.
    Wang LL; Chen XF; Hu P; Lu SY; Fu BQ; Li YS; Zhai FF; Ju DD; Zhang SJ; Shui YM; Chang J; Ma XL; Su B; Zhou Y; Liu ZS; Ren HL
    BMC Vet Res; 2019 Aug; 15(1):304. PubMed ID: 31438945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.