These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36354587)

  • 41. Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues.
    Kochetkova T; Peruzzi C; Braun O; Overbeck J; Maurya AK; Neels A; Calame M; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 119():390-404. PubMed ID: 33122147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties.
    Wang XD; Masilamani NS; Mabrey JD; Alder ME; Agrawal CM
    Bone; 1998 Jul; 23(1):67-72. PubMed ID: 9662132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution.
    Takano Y; Turner CH; Owan I; Martin RB; Lau ST; Forwood MR; Burr DB
    J Orthop Res; 1999 Jan; 17(1):59-66. PubMed ID: 10073648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse.
    Liu F; Hu K; Al-Qudsy LH; Wu LQ; Wang Z; Xu HY; Yang H; Yang PF
    Acta Biomater; 2022 Oct; 152():345-354. PubMed ID: 36087867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces.
    Lai ZB; Wang M; Yan C; Oloyede A
    J Mech Behav Biomed Mater; 2014 Aug; 36():12-20. PubMed ID: 24786380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse.
    Silva MJ; Brodt MD; Wopenka B; Thomopoulos S; Williams D; Wassen MH; Ko M; Kusano N; Bank RA
    J Bone Miner Res; 2006 Jan; 21(1):78-88. PubMed ID: 16355276
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.
    Collier TA; Nash A; Birch HL; de Leeuw NH
    J Biomol Struct Dyn; 2019 Feb; 37(2):537-549. PubMed ID: 29380684
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone.
    Li Y; Aparicio C
    PLoS One; 2013; 8(9):e76782. PubMed ID: 24086763
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone.
    Leng H; Reyes MJ; Dong XN; Wang X
    Bone; 2013 Aug; 55(2):288-91. PubMed ID: 23598045
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heterogeneous Structure and Dynamics of Water in a Hydrated Collagen Microfibril.
    Vassaux M
    Biomacromolecules; 2024 Jul; ():. PubMed ID: 38975936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering.
    Liu Y; Luo D; Wang T
    Small; 2016 Sep; 12(34):4611-32. PubMed ID: 27322951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the viscoelastic behavior of a simplified collagen micro-fibril based on molecular dynamics simulations.
    Ghodsi H; Darvish K
    J Mech Behav Biomed Mater; 2016 Oct; 63():26-34. PubMed ID: 27341288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone.
    Nair AK; Gautieri A; Buehler MJ
    Biomacromolecules; 2014 Jul; 15(7):2494-500. PubMed ID: 24892376
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strength-fracture toughness synergy strategy in ostrich tibia's compact bone: Hierarchical and gradient.
    Li JZ; Wang X; He LT; Yan FX; Zhang N; Ren CX; Hu QD
    J Mech Behav Biomed Mater; 2022 Jul; 131():105262. PubMed ID: 35561599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model.
    Lin L; Samuel J; Zeng X; Wang X
    J Mech Behav Biomed Mater; 2017 Jan; 65():224-235. PubMed ID: 27592291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanostructural alteration in bone quantified in terms of orientation distribution of mineral crystals: a possible tool for fracture risk assessment.
    Giri B; Tadano S
    J Biomech Eng; 2011 Dec; 133(12):124503. PubMed ID: 22206430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational investigation of the effect of water on the nanomechanical behavior of bone.
    Maghsoudi-Ganjeh M; Wang X; Zeng X
    J Mech Behav Biomed Mater; 2020 Jan; 101():103454. PubMed ID: 31586882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils.
    Pang X; Lin L; Tang B
    Sci Rep; 2017 Apr; 7():46042. PubMed ID: 28378770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.