These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36354610)

  • 21. Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria.
    He S; Zhong L; Duan J; Feng Y; Yang B; Yang L
    Front Microbiol; 2017; 8():823. PubMed ID: 28588556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile preparation of polyacrylamide/chitosan/Fe
    Zhang C; Dai Y; Wu Y; Lu G; Cao Z; Cheng J; Wang K; Yang H; Xia Y; Wen X; Ma W; Liu C; Wang Z
    Carbohydr Polym; 2020 Apr; 234():115882. PubMed ID: 32070505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatible Fe
    Kamari S; Shahbazi A
    Chemosphere; 2020 Mar; 243():125282. PubMed ID: 31734593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment and optimization of As(V) adsorption on hydrogel composite integrating chitosan-polyvinyl alcohol and Fe
    Weerasundara L; Ok YS; Kumarathilaka P; Marchuk A; Bundschuh J
    Sci Total Environ; 2023 Jan; 855():158877. PubMed ID: 36150591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose-Based Metallogels-Part 3: Multifunctional Materials.
    Mikhailidi A; Ungureanu E; Belosinschi D; Tofanica BM; Volf I
    Gels; 2023 Nov; 9(11):. PubMed ID: 37998968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recyclable aqueous metal adsorbent: Synthesis and Cu(II) sorption characteristics of ternary nanocomposites of Fe
    Kim HJ; Choi H; Sharma AK; Hong WG; Shin K; Song H; Kim HY; Hong YJ
    J Hazard Mater; 2021 Jan; 401():123283. PubMed ID: 32652415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of hemicellulose-based hydrogels from biomass refining industrial effluent for effective removal of methylene blue dye.
    Hu N; Chen D; Guan Q; Peng L; Zhang J; He L; Shi Y
    Environ Technol; 2022 Jan; 43(4):489-499. PubMed ID: 32657263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low cost hydrogels based on gum Tragacanth and TiO
    Ranjbar-Mohammadi M; Rahimdokht M; Pajootan E
    Int J Biol Macromol; 2019 Aug; 134():967-975. PubMed ID: 31071399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of magnetic clay-based carboxymethyl cellulose-acrylic acid hydrogel nanocomposite for methylene blue dye removal from aqueous solution.
    Malatji N; Makhado E; Ramohlola KE; Modibane KD; Maponya TC; Monama GR; Hato MJ
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44089-44105. PubMed ID: 32761344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water.
    Marciano JS; Ferreira RR; de Souza AG; Barbosa RFS; de Moura Junior AJ; Rosa DS
    Int J Biol Macromol; 2021 Jun; 181():112-124. PubMed ID: 33771541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites.
    Liu Y; Zheng Y; Wang A
    J Environ Sci (China); 2010; 22(4):486-93. PubMed ID: 20617722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient removal of arsenic using graphene-zeolite based composites.
    Khatamian M; Khodakarampoor N; Saket-Oskoui M
    J Colloid Interface Sci; 2017 Jul; 498():433-441. PubMed ID: 28349886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic graphene oxide-containing chitosan‑sodium alginate hydrogel beads for highly efficient and sustainable removal of cationic dyes.
    Ma J; Zhang M; Ji M; Zhang L; Qin Z; Zhang Y; Gao L; Jiao T
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2221-2231. PubMed ID: 34780889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TiO
    Wang Z; Wu Z; Zhi X; Tu T; Nie J; Du X; Luo Y
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):59963-59973. PubMed ID: 34152543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption properties of β-cyclodextrin modified hydrogel for methylene blue.
    Wang JW; Lan Dai ; Yong-Qiang Liu ; Li RF; Yang XT; Lan GH; Qiu HY; Xu B
    Carbohydr Res; 2021 Mar; 501():108276. PubMed ID: 33662813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent.
    Pandey S; Do JY; Kim J; Kang M
    Int J Biol Macromol; 2020 Jan; 143():60-75. PubMed ID: 31812747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous fixed-bed column study and adsorption modeling removal of Ni
    Banza M; Rutto H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(2):117-129. PubMed ID: 35137674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nanocomposite hydrogel.
    Peighambardoust SJ; Aghamohammadi-Bavil O; Foroutan R; Arsalani N
    Int J Biol Macromol; 2020 Sep; 159():1122-1131. PubMed ID: 32422256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of glutathione functionalized self-assembled magnetite nanochains for effective removal of crystal violet and phenol red dye from aqueous matrix.
    Behera M; Kumari N; Raza K; Singh R
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72260-72278. PubMed ID: 35303233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.