These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36354752)

  • 1. Matrix-Assisted
    Shin S; Hyun J
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52516-52523. PubMed ID: 36354752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-Printed Electroactive Hydrogel Architectures with Sub-100 µm Resolution Promote Myoblast Viability.
    Keate RL; Tropp J; Collins CP; Ware HOT; Petty AJ; Ameer GA; Sun C; Rivnay J
    Macromol Biosci; 2022 Aug; 22(8):e2200103. PubMed ID: 35596668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels.
    Lin F; Zheng R; Chen J; Su W; Dong B; Lin C; Huang B; Lu B
    Carbohydr Polym; 2019 Feb; 205():244-254. PubMed ID: 30446101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels.
    Wang J; Liu Y; Su S; Wei J; Rahman SE; Ning F; Christopher G; Cong W; Qiu J
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing of Stretchable, Adhesive and Conductive Ti
    Zhao W; Cao J; Wang F; Tian F; Zheng W; Bao Y; Zhang K; Zhang Z; Yu J; Xu J; Liu X; Lu B
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Particle Free Printing of Biocompatible Conductive Hydrogel Platforms for Neuron Growth and Electrophysiological Recording.
    Wang C; Rubakhin SS; Enright MJ; Sweedler JV; Nuzzo RG
    Adv Funct Mater; 2021 Apr; 31(14):. PubMed ID: 34305503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.
    Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L
    J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Situ Oxidative Polymerization of Pyrrole Composited with Cellulose Nanocrystal by Reactive Ink-Jet Printing on Fiber Substrates.
    Li X; Cao M; Li S; Li L; Yang Y; Liu R; Sun Z; Mo L; Xin Z; Chen Y; Li Y; Fang Y; Qi Y
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor.
    Tie J; Chai H; Mao Z; Zhang L; Zhong Y; Sui X; Xu H
    Carbohydr Polym; 2021 Dec; 273():118600. PubMed ID: 34561000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics.
    Zhu H; Hu X; Liu B; Chen Z; Qu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59243-59251. PubMed ID: 34870967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled functional components-doped conductive polypyrrole composite hydrogels with enhanced electrochemical performances.
    Yin J; Liu Q; Zhou J; Zhang L; Zhang Q; Rao R; Liu S; Jiao T
    RSC Adv; 2020 Mar; 10(18):10546-10551. PubMed ID: 35492894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing.
    Eutionnat-Diffo PA; Cayla A; Chen Y; Guan J; Nierstrasz V; Campagne C
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures.
    Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK
    Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D structure of lightweight, conductive cellulose nanofiber foam.
    Lee H; Kim S; Shin S; Hyun J
    Carbohydr Polym; 2021 Feb; 253():117238. PubMed ID: 33278994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods.
    Gan D; Han L; Wang M; Xing W; Xu T; Zhang H; Wang K; Fang L; Lu X
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36218-36228. PubMed ID: 30251533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties.
    Huang B; Hu R; Xue Z; Zhao J; Li Q; Xia T; Zhang W; Lu C
    Carbohydr Polym; 2020 Mar; 231():115736. PubMed ID: 31888822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the 3D Printing of Conductive Hydrogels for Sensor Applications: A Review.
    Liang X; Zhang M; Chong CM; Lin D; Chen S; Zhen Y; Ding H; Zhong HJ
    Polymers (Basel); 2024 Jul; 16(15):. PubMed ID: 39125157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.