These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36354953)

  • 1. New Insights into the Mechanism of
    Gan L; Yin Y; Niu Q; Yan X; Yin S
    J Fungi (Basel); 2022 Nov; 8(11):. PubMed ID: 36354953
    [No Abstract]   [Full Text] [Related]  

  • 2. The
    Fardella PA; Tian Z; Clarke BB; Belanger FC
    J Fungi (Basel); 2022 Oct; 8(10):. PubMed ID: 36294663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Phenotypic, Genomic, and Transcriptomic Analyses of Two Contrasting Strains of the Plant Beneficial Fungus
    Pachauri S; Zaid R; Sherkhane PD; Easa J; Viterbo A; Chet I; Horwitz BA; Mukherjee PK
    Microbiol Spectr; 2023 Jan; 11(2):e0302422. PubMed ID: 36719232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time PCR Detection of
    Groben G; Clarke BB; Murphy J; Koch P; Crouch JA; Lee S; Zhang N
    Plant Dis; 2020 Dec; 104(12):3118-3123. PubMed ID: 33058719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Metabolic Changes Caused by the
    Schweiger R; Padilla-Arizmendi F; Nogueira-López G; Rostás M; Lawry R; Brown C; Hampton J; Steyaert JM; Müller C; Mendoza-Mendoza A
    Mol Plant Microbe Interact; 2021 May; 34(5):524-537. PubMed ID: 33166203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First Report of Dollar Spot, Caused by Sclerotinia homoeocarpa, of Creeping Bentgrass in Norway.
    Espevig T; Brurberg MB; Kvalbein A
    Plant Dis; 2015 Feb; 99(2):287. PubMed ID: 30699600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Seq analysis of the Sclerotinia homoeocarpa--creeping bentgrass pathosystem.
    Orshinsky AM; Hu J; Opiyo SO; Reddyvari-Channarayappa V; Mitchell TK; Boehm MJ
    PLoS One; 2012; 7(8):e41150. PubMed ID: 22905098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Resources for Four
    Zhang H; Dong Y; Jin P; Hu J; Lamour K; Yang Z
    Plant Dis; 2023 Mar; 107(3):929-934. PubMed ID: 36265142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping QTL for dollar spot resistance in creeping bentgrass (Agrostis stolonifera L.).
    Chakraborty N; Curley J; Warnke S; Casler MD; Jung G
    Theor Appl Genet; 2006 Nov; 113(8):1421-35. PubMed ID: 16969681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea.
    Contreras-Cornejo HA; Macías-Rodríguez L; Beltrán-Peña E; Herrera-Estrella A; López-Bucio J
    Plant Signal Behav; 2011 Oct; 6(10):1554-63. PubMed ID: 21931272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heritability of dollar spot resistance in creeping bentgrass.
    Bonos SA
    Phytopathology; 2006 Aug; 96(8):808-12. PubMed ID: 18943744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots.
    Malinich EA; Wang K; Mukherjee PK; Kolomiets M; Kenerley CM
    BMC Genomics; 2019 Apr; 20(1):280. PubMed ID: 30971198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gliotoxin, an Immunosuppressive Fungal Metabolite, Primes Plant Immunity: Evidence from
    Zaid R; Koren R; Kligun E; Gupta R; Leibman-Markus M; Mukherjee PK; Kenerley CM; Bar M; Horwitz BA
    mBio; 2022 Aug; 13(4):e0038922. PubMed ID: 35862794
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Huang PC; Yuan P; Grunseich JM; Taylor J; Tiénébo EO; Pierson EA; Bernal JS; Kenerley CM; Kolomiets MV
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Resources for Seven Fungal Isolates That Cause Dollar Spot Disease in Turfgrass, Including
    Crouch JA; Beirn LA; Boehm MJ; Carbone I; Clarke BB; Kerns JP; Malapi-Wight M; Mitchell TK; Venu RC; Tredway LP
    Plant Dis; 2021 Mar; 105(3):691-694. PubMed ID: 32720885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance.
    Lamdan NL; Shalaby S; Ziv T; Kenerley CM; Horwitz BA
    Mol Cell Proteomics; 2015 Apr; 14(4):1054-63. PubMed ID: 25681119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of a novel antimicrobial peptide Penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance.
    Zhou M; Hu Q; Li Z; Li D; Chen CF; Luo H
    PLoS One; 2011; 6(9):e24677. PubMed ID: 21931807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichoderma virens Big Ras GTPase-1, a molecular switch for transforming a mutualistic fungus to plants in a deleterious microbe.
    Dautt-Castro M; Rebolledo-Prudencio OG; Estrada-Rivera M; Islas-Osuna MA; Jijón-Moreno S; Casas-Flores S
    Microbiol Res; 2024 Jan; 278():127508. PubMed ID: 37864916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal and Vertical Distribution of
    Groben G; Schaefer B; Clarke BB; Murphy JA; Purdon P; Koch P; Zhang N
    Plant Dis; 2024 Nov; ():PDIS08231570RE. PubMed ID: 39003502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana.
    Poveda J; Abril-Urías P; Muñoz-Acero J; Nicolás C
    Planta; 2022 Nov; 257(1):6. PubMed ID: 36437384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.