These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36355033)

  • 1. Challenges and Opportunities of Chemiresistors Based on Microelectromechanical Systems for Chemical Olfaction.
    Guo M; Brewster Ii JT; Zhang H; Zhao Y; Zhao Y
    ACS Nano; 2022 Nov; 16(11):17778-17801. PubMed ID: 36355033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-Temperature Semiconductor Gas Sensors: Challenges and Opportunities.
    Tang Y; Zhao Y; Liu H
    ACS Sens; 2022 Dec; 7(12):3582-3597. PubMed ID: 36399520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Oxide Nanoparticle-Based Ferro-Nanofluids for Advanced Technological Applications.
    Imran M; Chaudhary AA; Ahmed S; Alam MM; Khan A; Zouli N; Hakami J; Rudayni HA; Khan SU
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development Trends and Perspectives of Future Sensors and MEMS/NEMS.
    Zhu J; Liu X; Shi Q; He T; Sun Z; Guo X; Liu W; Sulaiman OB; Dong B; Lee C
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Semiconductor-Based Chemiresistors and their Libraries for Next-Generation Artificial Olfaction.
    Jeong SY; Kim JS; Lee JH
    Adv Mater; 2020 Dec; 32(51):e2002075. PubMed ID: 32930431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives.
    Yoon JW; Lee JH
    Lab Chip; 2017 Oct; 17(21):3537-3557. PubMed ID: 28971204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application.
    Upadhyaya AM; Hasan MK; Abdel-Khalek S; Hassan R; Srivastava MC; Sharan P; Islam S; Saad AME; Vo N
    Front Public Health; 2021; 9():759032. PubMed ID: 34926383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant Magnetoresistance Biosensors in Biomedical Applications.
    Wu K; Tonini D; Liang S; Saha R; Chugh VK; Wang JP
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):9945-9969. PubMed ID: 35167743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microelectromechanical systems and nephrology: the next frontier in renal replacement technology.
    Kim S; Roy S
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):516-35. PubMed ID: 24206604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.
    Pang W; Zhao H; Kim ES; Zhang H; Yu H; Hu X
    Lab Chip; 2012 Jan; 12(1):29-44. PubMed ID: 22045252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.
    Herrera-May AL; Soler-Balcazar JC; Vázquez-Leal H; Martínez-Castillo J; Vigueras-Zuñiga MO; Aguilera-Cortés LA
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27563912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microelectromechanical Systems (MEMS) for Biomedical Applications.
    Chircov C; Grumezescu AM
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromachined Thermal Gas Sensors-A Review.
    Gardner ELW; Gardner JW; Udrea F
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Carbon for Flexible and Wearable Electronics.
    Wang C; Xia K; Wang H; Liang X; Yin Z; Zhang Y
    Adv Mater; 2019 Mar; 31(9):e1801072. PubMed ID: 30300444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Graphene-Based Wearable Gas and Chemical Sensors.
    Singh E; Meyyappan M; Nalwa HS
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34544-34586. PubMed ID: 28876901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications-Towards the CMOS-MEMS Monolithic Approach.
    Liu H; Zhang L; Li KHH; Tan OK
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batch Nanofabrication of Suspended Single 1D Nanoheaters for Ultralow-Power Metal Oxide Semiconductor-Based Gas Sensors.
    Kim T; Cho W; Kim B; Yeom J; Kwon YM; Baik JM; Kim JJ; Shin H
    Small; 2022 Dec; 18(48):e2204078. PubMed ID: 36180411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative technology-based approach of microelectromechanical systems (MEMS) for biosensing applications.
    Nicu L; Alava T; Leichle T; Saya D; Pourciel JB; Mathieu F; Soyer C; Remiens D; Ayela C; Haupt K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4475-8. PubMed ID: 23366921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives on C-MEMS and C-NEMS biotech applications.
    Forouzanfar S; Pala N; Madou M; Wang C
    Biosens Bioelectron; 2021 May; 180():113119. PubMed ID: 33711652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.