These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 36355040)
1. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. Gao J; Liu Y; Liu B; Huang KW ACS Nano; 2022 Nov; 16(11):17761-17777. PubMed ID: 36355040 [TBL] [Abstract][Full Text] [Related]
2. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media. Gao J; Tao H; Liu B Adv Mater; 2021 Aug; 33(31):e2003786. PubMed ID: 34169587 [TBL] [Abstract][Full Text] [Related]
3. Rational Design of an Iridium-Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation. Gao J; Huang X; Cai W; Wang Q; Jia C; Liu B ACS Appl Mater Interfaces; 2020 Jun; 12(23):25991-26001. PubMed ID: 32428393 [TBL] [Abstract][Full Text] [Related]
4. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. Li L; Wang P; Shao Q; Huang X Adv Mater; 2021 Dec; 33(50):e2004243. PubMed ID: 33749035 [TBL] [Abstract][Full Text] [Related]
5. Two Dimensional Ir-Based Catalysts for Acidic OER. Yu H; Ke J; Shao Q Small; 2023 Nov; 19(48):e2304307. PubMed ID: 37534380 [TBL] [Abstract][Full Text] [Related]
7. IrO Yan T; Chen S; Sun W; Liu Y; Pan L; Shi C; Zhang X; Huang ZF; Zou JJ ACS Appl Mater Interfaces; 2023 Feb; 15(5):6912-6922. PubMed ID: 36718123 [TBL] [Abstract][Full Text] [Related]
8. Revisiting the Activity Gap of Iridium Electrocatalysts for Acidic Water Oxidation. Gao J; Tan SX; Liu Y; Liu B; Huang KW J Phys Chem Lett; 2023 Jul; 14(28):6494-6505. PubMed ID: 37439712 [TBL] [Abstract][Full Text] [Related]
9. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. Chen L; Zhao W; Zhang J; Liu M; Jia Y; Wang R; Chai M Small; 2024 Oct; 20(43):e2403845. PubMed ID: 38940392 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation. Li W; Bu Y; Ge X; Li F; Han GF; Baek JB ChemSusChem; 2024 Jul; 17(13):e202400295. PubMed ID: 38362788 [TBL] [Abstract][Full Text] [Related]
11. Low-iridium electrocatalysts for acidic oxygen evolution. Fan M; Liang X; Chen H; Zou X Dalton Trans; 2020 Nov; 49(44):15568-15573. PubMed ID: 33112324 [TBL] [Abstract][Full Text] [Related]
12. Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides. Saveleva VA; Wang L; Teschner D; Jones T; Gago AS; Friedrich KA; Zafeiratos S; Schlögl R; Savinova ER J Phys Chem Lett; 2018 Jun; 9(11):3154-3160. PubMed ID: 29775319 [TBL] [Abstract][Full Text] [Related]
13. A review on fundamentals for designing oxygen evolution electrocatalysts. Song J; Wei C; Huang ZF; Liu C; Zeng L; Wang X; Xu ZJ Chem Soc Rev; 2020 Apr; 49(7):2196-2214. PubMed ID: 32133479 [TBL] [Abstract][Full Text] [Related]
14. Multivalence-State Tungsten Species Facilitated Iridium Loading for Robust Acidic Water Oxidation. Guan Z; Li J; Li S; Wang K; Lei L; Wang Y; Zhuang L; Xu Z Small Methods; 2024 Aug; 8(8):e2301419. PubMed ID: 38315088 [TBL] [Abstract][Full Text] [Related]
15. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Wu ZY; Chen FY; Li B; Yu SW; Finfrock YZ; Meira DM; Yan QQ; Zhu P; Chen MX; Song TW; Yin Z; Liang HW; Zhang S; Wang G; Wang H Nat Mater; 2023 Jan; 22(1):100-108. PubMed ID: 36266572 [TBL] [Abstract][Full Text] [Related]
16. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. Rong C; Dastafkan K; Wang Y; Zhao C Adv Mater; 2023 Dec; 35(49):e2211884. PubMed ID: 37549889 [TBL] [Abstract][Full Text] [Related]
17. A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media. Zhang R; Dubouis N; Ben Osman M; Yin W; Sougrati MT; Corte DAD; Giaume D; Grimaud A Angew Chem Int Ed Engl; 2019 Mar; 58(14):4571-4575. PubMed ID: 30672081 [TBL] [Abstract][Full Text] [Related]
18. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Lončar A; Escalera-López D; Cherevko S; Hodnik N Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202114437. PubMed ID: 34942052 [TBL] [Abstract][Full Text] [Related]
19. Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Wang C; Zhai P; Xia M; Wu Y; Zhang B; Li Z; Ran L; Gao J; Zhang X; Fan Z; Sun L; Hou J Angew Chem Int Ed Engl; 2021 Dec; 60(52):27126-27134. PubMed ID: 34626056 [TBL] [Abstract][Full Text] [Related]
20. IrCuNi Deeply Concave Nanocubes as Highly Active Oxygen Evolution Reaction Electrocatalyst in Acid Electrolyte. Liu D; Lv Q; Lu S; Fang J; Zhang Y; Wang X; Xue Y; Zhu W; Zhuang Z Nano Lett; 2021 Apr; 21(7):2809-2816. PubMed ID: 33733796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]