These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36355051)

  • 1. Development of a simultaneous electrorotation device with microwells for monitoring the rotation rates of multiple single cells upon chemical stimulation.
    Suzuki M; Kawai S; Shee CF; Yamada R; Uchida S; Yasukawa T
    Lab Chip; 2023 Feb; 23(4):692-701. PubMed ID: 36355051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation.
    Kawai S; Suzuki M; Arimoto S; Korenaga T; Yasukawa T
    Analyst; 2020 Jun; 145(12):4188-4195. PubMed ID: 32462157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation.
    Han SI; Joo YD; Han KH
    Analyst; 2013 Mar; 138(5):1529-37. PubMed ID: 23353873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new microsystem for automated electrorotation measurements using laser tweezers.
    Reichle C; Schnelle T; Müller T; Leya T; Fuhr G
    Biochim Biophys Acta; 2000 Jul; 1459(1):218-29. PubMed ID: 10924913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrorotation Rates of K562 Cells Accompanied by Erythroid Differentiation Induced by Sodium Butyrate.
    Takeuchi R; Suzuki M; Yasukawa T
    Anal Sci; 2021 Feb; 37(2):229-232. PubMed ID: 33390466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell pairing using microwell array electrodes based on dielectrophoresis.
    Yoshimura Y; Tomita M; Mizutani F; Yasukawa T
    Anal Chem; 2014 Jul; 86(14):6818-22. PubMed ID: 24947270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties.
    Huang L; Zhao P; Wang W
    Lab Chip; 2018 Aug; 18(16):2359-2368. PubMed ID: 29946598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the distribution of rotational torque on electrorotation chips with 3D electrodes.
    Bahrieh G; Özgür E; Koyuncuoğlu A; Erdem M; Gündüz U; Külah H
    Electrophoresis; 2015 Aug; 36(15):1785-94. PubMed ID: 25963845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AC electric field induced dipole-based on-chip 3D cell rotation.
    Benhal P; Chase JG; Gaynor P; Oback B; Wang W
    Lab Chip; 2014 Aug; 14(15):2717-27. PubMed ID: 24933556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of nanoparticles uptaken by cells on electrorotation.
    Chuang CH; Hsu YM; Yeh CC
    Electrophoresis; 2009 May; 30(9):1449-56. PubMed ID: 19350546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes.
    Şen M; Ino K; Ramón-Azcón J; Shiku H; Matsue T
    Lab Chip; 2013 Sep; 13(18):3650-2. PubMed ID: 23884281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic registration of living cells to a microelectrode array.
    Gray DS; Tan JL; Voldman J; Chen CS
    Biosens Bioelectron; 2004 Feb; 19(7):771-80. PubMed ID: 14709396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretic registration of living cells to a microelectrode array.
    Gray DS; Tan JL; Voldman J; Chen CS
    Biosens Bioelectron; 2004 Jul; 19(12):1765-74. PubMed ID: 15198083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip technology for single-cell arraying, electrorotation-based analysis and selective release.
    Keim K; Rashed MZ; Kilchenmann SC; Delattre A; Gonçalves AF; Éry P; Guiducci C
    Electrophoresis; 2019 Jul; 40(14):1830-1838. PubMed ID: 31111973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrofusion of cells with different diameters by generating asymmetrical electric field in the microwell array.
    Onohara I; Suzuki M; Isozaki Y; Tsumoto K; Tomita M; Yasukawa T
    Anal Sci; 2022 Feb; 38(2):235-239. PubMed ID: 35286647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroactive microwell arrays for highly efficient single-cell trapping and analysis.
    Kim SH; Yamamoto T; Fourmy D; Fujii T
    Small; 2011 Nov; 7(22):3239-47. PubMed ID: 21932278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrorotation of titanium microspheres.
    Arcenegui JJ; Ramos A; García-Sánchez P; Morgan H
    Electrophoresis; 2013 Apr; 34(7):979-86. PubMed ID: 23348799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrorotation of semiconducting microspheres.
    Rodríguez-Sánchez L; Ramos A; García-Sánchez P
    Phys Rev E; 2019 Oct; 100(4-1):042616. PubMed ID: 31770957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.