These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36355213)
1. Phosphate solubilization by Antarctic yeasts isolated from lichens. da Silva AV; da Silva MK; de Oliveira AJ; Silva JV; Paulino SS; de Queiroz AC; Leite J; França PHB; Putzke J; Montone R; de Oliveira VM; Dos Santos VP; Rosa LH; Duarte AWF Arch Microbiol; 2022 Nov; 204(12):698. PubMed ID: 36355213 [TBL] [Abstract][Full Text] [Related]
2. Antarctic lichens as a source of phosphate-solubilizing bacteria. da Silva AV; de Oliveira AJ; Tanabe ISB; Silva JV; da Silva Barros TW; da Silva MK; França PHB; Leite J; Putzke J; Montone R; de Oliveira VM; Rosa LH; Duarte AWF Extremophiles; 2021 Mar; 25(2):181-191. PubMed ID: 33635427 [TBL] [Abstract][Full Text] [Related]
3. Extracellular hydrolytic enzymes produced by yeasts from Antarctic lichens. DA Silva MK; DA Silva AV; Fernandez PM; Montone RC; Alves RP; DE Queiroz AC; DE Oliveira VM; Dos Santos VP; Putzke J; Rosa LH; Duarte AWF An Acad Bras Cienc; 2022; 94(suppl 1):e20210540. PubMed ID: 35293947 [TBL] [Abstract][Full Text] [Related]
4. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Li AH; Yuan FX; Groenewald M; Bensch K; Yurkov AM; Li K; Han PJ; Guo LD; Aime MC; Sampaio JP; Jindamorakot S; Turchetti B; Inacio J; Fungsin B; Wang QM; Bai FY Stud Mycol; 2020 Jun; 96():17-140. PubMed ID: 32206137 [TBL] [Abstract][Full Text] [Related]
5. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Duarte AW; Dayo-Owoyemi I; Nobre FS; Pagnocca FC; Chaud LC; Pessoa A; Felipe MG; Sette LD Extremophiles; 2013 Nov; 17(6):1023-35. PubMed ID: 24114281 [TBL] [Abstract][Full Text] [Related]
6. Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Duarte AWF; Passarini MRZ; Delforno TP; Pellizzari FM; Cipro CVZ; Montone RC; Petry MV; Putzke J; Rosa LH; Sette LD Environ Microbiol Rep; 2016 Oct; 8(5):874-885. PubMed ID: 27518570 [TBL] [Abstract][Full Text] [Related]
7. Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Lebrazi S; Niehaus K; Bednarz H; Fadil M; Chraibi M; Fikri-Benbrahim K J Genet Eng Biotechnol; 2020 Nov; 18(1):71. PubMed ID: 33175273 [TBL] [Abstract][Full Text] [Related]
8. Taxonomy and richness of yeasts associated with angiosperms, bryophytes, and meltwater biofilms collected in the Antarctic Peninsula. Ferreira EMS; de Sousa FMP; Rosa LH; Pimenta RS Extremophiles; 2019 Jan; 23(1):151-159. PubMed ID: 30499002 [TBL] [Abstract][Full Text] [Related]
9. Metabolic activity and bioweathering properties of yeasts isolated from different supraglacial environments of Antarctica and Himalaya. Sanyal A; Antony R; Ganesan P; Thamban M Antonie Van Leeuwenhoek; 2020 Dec; 113(12):2243-2258. PubMed ID: 33219409 [TBL] [Abstract][Full Text] [Related]
10. Phosphate solubilization and acid phosphatase activity of Behera BC; Yadav H; Singh SK; Mishra RR; Sethi BK; Dutta SK; Thatoi HN J Genet Eng Biotechnol; 2017 Jun; 15(1):169-178. PubMed ID: 30647653 [TBL] [Abstract][Full Text] [Related]
11. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. Vyas P; Gulati A BMC Microbiol; 2009 Aug; 9():174. PubMed ID: 19698133 [TBL] [Abstract][Full Text] [Related]
12. Rock phosphate dissolution by specific yeast. Narsian V; Samaha S M AA; Patel HH Indian J Microbiol; 2010 Mar; 50(1):57-62. PubMed ID: 23100808 [TBL] [Abstract][Full Text] [Related]
13. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Johri JK; Surange S; Nautiyal CS Curr Microbiol; 1999 Aug; 39(2):89-93. PubMed ID: 10398833 [TBL] [Abstract][Full Text] [Related]
14. Antarctic yeasts: analysis of their freeze-thaw tolerance and production of antifreeze proteins, fatty acids and ergosterol. Villarreal P; Carrasco M; Barahona S; Alcaíno J; Cifuentes V; Baeza M BMC Microbiol; 2018 Jul; 18(1):66. PubMed ID: 29976143 [TBL] [Abstract][Full Text] [Related]
15. Initial pH of medium affects organic acids production but do not affect phosphate solubilization. Marra LM; de Oliveira-Longatti SM; Soares CR; de Lima JM; Olivares FL; Moreira FM Braz J Microbiol; 2015 Jun; 46(2):367-75. PubMed ID: 26273251 [TBL] [Abstract][Full Text] [Related]
17. Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle. Yadav AN; Sharma D; Gulati S; Singh S; Dey R; Pal KK; Kaushik R; Saxena AK Sci Rep; 2015 Jul; 5():12293. PubMed ID: 26216440 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. Liba CM; Ferrara FI; Manfio GP; Fantinatti-Garboggini F; Albuquerque RC; Pavan C; Ramos PL; Moreira-Filho CA; Barbosa HR J Appl Microbiol; 2006 Nov; 101(5):1076-86. PubMed ID: 17040231 [TBL] [Abstract][Full Text] [Related]
19. Pseudomonas corrugata (NRRL B-30409) Mutants Increased Phosphate Solubilization, Organic Acid Production, and Plant Growth at Lower Temperatures. Trivedi P; Sa T Curr Microbiol; 2008 Feb; 56(2):140-4. PubMed ID: 18026795 [TBL] [Abstract][Full Text] [Related]
20. [Isolation, identification and characterization of a strain of phosphate-solubilizing bacteria from red soil]. Liu W; He Y; Zhang K; Fan J; Cao H Wei Sheng Wu Xue Bao; 2012 Mar; 52(3):326-33. PubMed ID: 22712403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]