BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36355555)

  • 1. Quantitative Structure-Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective.
    Pal R; Patra SG; Chattaraj PK
    Pharmaceuticals (Basel); 2022 Nov; 15(11):. PubMed ID: 36355555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of atomic compressibility and its application in QSAR domain for toxicological property prediction.
    Tandon H; Chakraborty T; Suhag V
    J Mol Model; 2019 Sep; 25(10):303. PubMed ID: 31493097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobicity versus electrophilicity: A new protocol toward quantitative structure-toxicity relationship.
    Pal R; Jana G; Sural S; Chattaraj PK
    Chem Biol Drug Des; 2019 Jun; 93(6):1083-1095. PubMed ID: 30597757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Structure-activity Relationship Analysis for Predicting Lipophilicity of Aniline Derivatives (Including some Pharmaceutical Compounds).
    Rezaei M; Mohammadinasab E; Esfahani TM
    Comb Chem High Throughput Screen; 2019 Aug; 22(5):333-345. PubMed ID: 31446891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing toxicity through electrophilicity.
    Roy DR; Sarkar U; Chattaraj PK; Mitra A; Padmanabhan J; Parthasarathi R; Subramanian V; Van Damme S; Bultinck P
    Mol Divers; 2006 May; 10(2):119-31. PubMed ID: 16763875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophilicity as a possible descriptor for toxicity prediction.
    Roy DR; Parthasarathi R; Maiti B; Subramanian V; Chattaraj PK
    Bioorg Med Chem; 2005 May; 13(10):3405-12. PubMed ID: 15848752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of toxicity of phenols to Tetrahymena pyriformis and subsequent derivation of QSARs from hydrophobic, ionization and electronic parameters.
    Zhao YH; Yuan X; Su LM; Qin WC; Abraham MH
    Chemosphere; 2009 May; 75(7):866-71. PubMed ID: 19268338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR study of anti-Human African Trypanosomiasis activity for 2-phenylimidazopyridines derivatives using DFT and Lipinski's descriptors.
    Chtita S; Ghamali M; Ousaa A; Aouidate A; Belhassan A; Taourati AI; Masand VH; Bouachrine M; Lakhlifi T
    Heliyon; 2019 Mar; 5(3):e01304. PubMed ID: 30899832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Electronic-structure Informatics Study on the Toxicity of Alkylphenols to Tetrahymena pyriformis.
    Sugimoto M; Manggara AB; Yoshida K; Inoue T; Ideo T
    Mol Inform; 2020 Jan; 39(1-2):e1900121. PubMed ID: 31930704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of organic chemicals to Tetrahymena pyriformis: effect of polarity and ionization on toxicity.
    Zhao YH; Zhang XJ; Wen Y; Sun FT; Guo Z; Qin WC; Qin HW; Xu JL; Sheng LX; Abraham MH
    Chemosphere; 2010 Mar; 79(1):72-7. PubMed ID: 20079521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis.
    Aptula AO; Roberts DW; Cronin MT; Schultz TW
    Chem Res Toxicol; 2005 May; 18(5):844-54. PubMed ID: 15892578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Aquatic Toxicity of Benzene Derivatives to Tetrahymena pyriformis According to OECD Principles.
    Castillo-Garit JA; Abad C; Casañola-Martin GM; Barigye SJ; Torrens F; Torreblanca A
    Curr Pharm Des; 2016; 22(33):5085-5094. PubMed ID: 27568732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSPR models for polychlorinated biphenyls: n-Octanol/water partition coefficient.
    Padmanabhan J; Parthasarathi R; Subramanian V; Chattaraj PK
    Bioorg Med Chem; 2006 Feb; 14(4):1021-8. PubMed ID: 16214354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-activity relationships for the inhibition toxicity to root elongation of Cucumis sativus of selected phenols and interspecies correlation with Tetrahymena pyriformis.
    Wang X; Sun C; Wang Y; Wang L
    Chemosphere; 2002 Jan; 46(2):153-61. PubMed ID: 11827272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Toxicity of Different Substituted Aromatic Compounds to the Aquatic Ciliate
    Luan F; Wang T; Tang L; Zhang S; Cordeiro MNDS
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29695132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametrization of electrophilicity for the prediction of the toxicity of aromatic compounds.
    Cronin MT; Manga N; Seward JR; Sinks GD; Schultz TW
    Chem Res Toxicol; 2001 Nov; 14(11):1498-505. PubMed ID: 11712907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR analysis of the acute toxicity of avermectins towards
    Tinkov OV; Grigorev VY; Grigoreva LD
    SAR QSAR Environ Res; 2021 Jul; 32(7):541-571. PubMed ID: 34157880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interspecies quantitative structure-activity relationship model for aldehydes: aquatic toxicity.
    Dimitrov S; Koleva Y; Schultz TW; Walker JD; Mekenyan O
    Environ Toxicol Chem; 2004 Feb; 23(2):463-70. PubMed ID: 14982395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSARs for selected aliphatic and aromatic amines.
    Schultz TW; Wilke TS; Bryant SE; Hosein LM
    Sci Total Environ; 1991 Dec; 109-110():581-7. PubMed ID: 1815376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-toxicity relationships for aliphatic compounds encompassing a variety of mechanisms of toxic action to Vibrio fischeri.
    Croni MT; Bowers GS; Sinks GD; Schultz TW
    SAR QSAR Environ Res; 2000; 11(3-4):301-12. PubMed ID: 10969877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.