BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36355579)

  • 1. Chemical Tools for the Study of DNA Repair.
    Jun YW; Kool ET
    Acc Chem Res; 2022 Dec; 55(23):3495-3506. PubMed ID: 36355579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.
    Dong M; Vongchampa V; Gingipalli L; Cloutier JF; Kow YW; O'Connor T; Dedon PC
    Mutat Res; 2006 Feb; 594(1-2):120-34. PubMed ID: 16274707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-DDB as a General Sensor of DNA Damage in Chromatin: Multifaceted Approaches to Assess Its Direct Role in Base Excision Repair.
    Raja SJ; Van Houten B
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemical and kinetic perspective on base excision repair of DNA.
    Schermerhorn KM; Delaney S
    Acc Chem Res; 2014 Apr; 47(4):1238-46. PubMed ID: 24646203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OGG1 co-inhibition antagonizes the tumor-inhibitory effects of targeting MTH1.
    Zhang L; Misiara L; Samaranayake GJ; Sharma N; Nguyen DM; Tahara YK; Kool ET; Rai P
    Redox Biol; 2021 Apr; 40():101848. PubMed ID: 33450725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Excimer Clamp for Measuring Damaged-Base Excision by the DNA Repair Enzyme NTH1.
    Jun YW; Wilson DL; Kietrys AM; Lotsof ER; Conlon SG; David SS; Kool ET
    Angew Chem Int Ed Engl; 2020 May; 59(19):7450-7455. PubMed ID: 32109332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses.
    Jun YW; Albarran E; Wilson DL; Ding J; Kool ET
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202111829. PubMed ID: 34851014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Oxime Formation Enables Efficient Fluorescence Light-up Measurement of DNA Base Excision.
    Wilson DL; Kool ET
    J Am Chem Soc; 2019 Dec; 141(49):19379-19388. PubMed ID: 31774658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions.
    Greenberg MM
    Acc Chem Res; 2014 Feb; 47(2):646-55. PubMed ID: 24369694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities.
    Gines G; Saint-Pierre C; Gasparutto D
    Anal Chim Acta; 2014 Feb; 812():168-75. PubMed ID: 24491778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei.
    Nakabeppu Y; Tsuchimoto D; Ichinoe A; Ohno M; Ide Y; Hirano S; Yoshimura D; Tominaga Y; Furuichi M; Sakumi K
    Ann N Y Acad Sci; 2004 Apr; 1011():101-11. PubMed ID: 15126288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro Fluorogenic Real-Time Assay of the Repair of Oxidative DNA Damage.
    Edwards SK; Ono T; Wang S; Jiang W; Franzini RM; Jung JW; Chan KM; Kool ET
    Chembiochem; 2015 Jul; 16(11):1637-46. PubMed ID: 26073452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Templated chemistry for monitoring damage and repair directly in duplex DNA.
    Lee SH; Wang S; Kool ET
    Chem Commun (Camb); 2012 Aug; 48(65):8069-71. PubMed ID: 22782065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DNA repair enzyme MUTYH potentiates cytotoxicity of the alkylating agent MNNG by interacting with abasic sites.
    Raetz AG; Banda DM; Ma X; Xu G; Rajavel AN; McKibbin PL; Lebrilla CB; David SS
    J Biol Chem; 2020 Mar; 295(11):3692-3707. PubMed ID: 32001618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Assay for the Activity of Base Excision Repair Enzymes in Cellular Extracts Using Fluorescent DNA Probes.
    Kladova OA; Iakovlev DA; Groisman R; Ishchenko AA; Saparbaev MK; Fedorova OS; Kuznetsov NA
    Biochemistry (Mosc); 2020 Apr; 85(4):480-489. PubMed ID: 32569555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe.
    Alseth I; Korvald H; Osman F; Seeberg E; Bjørås M
    Nucleic Acids Res; 2004; 32(17):5119-25. PubMed ID: 15452279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.