BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36355780)

  • 1. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the Human Arm Stiffness Estimation Method Developed for Overground Physical Interaction Experiments.
    Kamma TK; Regmi S; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction.
    Regmi S; Burns D; Song YS
    Sci Rep; 2022 Nov; 12(1):18767. PubMed ID: 36335247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing small interaction forces through proprioception.
    Rashid F; Burns D; Song YS
    Sci Rep; 2021 Nov; 11(1):21829. PubMed ID: 34750408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Factors Considerations for Quantifiable Human States in Physical Human-Robot Interaction: A Literature Review.
    Abdulazeem N; Hu Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the sensitivity to small interaction forces in humans
    Rashid F; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6066-6069. PubMed ID: 34892500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proprioceptive Estimation of Forces Using Underactuated Fingers for Robot-Initiated pHRI.
    Ballesteros J; Pastor F; Gómez-De-Gabriel JM; Gandarias JM; García-Cerezo AJ; Urdiales C
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety Assessment Review of a Dressing Assistance Robot.
    Delgado Bellamy D; Chance G; Caleb-Solly P; Dogramadzi S
    Front Robot AI; 2021; 8():667316. PubMed ID: 34195231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive position anticipation in a support robot for overground gait training enhances transparency.
    Everarts C; Vallery H; Bolliger M; Ronsse R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Modular Design for Distributed Measurement of Human-Robot Interaction Forces in Wearable Devices.
    Ghonasgi K; Yousaf SN; Esmatloo P; Deshpande AD
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Calibration of Humanoid Robot Flexible Tactile Skin for Human-Robot Interaction.
    Chefchaouni Moussaoui S; Cisneros-Limón R; Kaminaga H; Benallegue M; Nobeshima T; Kanazawa S; Kanehiro F
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Policy Design for an Ankle-Foot Orthosis Using Simulated Physical Human-Robot Interaction via Deep Reinforcement Learning.
    Han JI; Lee JH; Choi HS; Kim JH; Choi J
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2186-2197. PubMed ID: 35925859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects.
    Alingh JF; Weerdesteyn V; Nienhuis B; van Asseldonk EHF; Geurts ACH; Groen BE
    J Neuroeng Rehabil; 2019 Mar; 16(1):40. PubMed ID: 30876445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity.
    Coenen P; van Werven G; van Nunen MP; Van Dieën JH; Gerrits KH; Janssen TW
    J Rehabil Med; 2012 Apr; 44(4):331-7. PubMed ID: 22453772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interday Reliability of Upper-limb Geometric MyoPassivity Map for Physical Human-Robot Interaction.
    Zhou X; Paik P; O'Keeffe R; Atashzar SF
    IEEE Trans Haptics; 2023; 16(4):658-664. PubMed ID: 37200129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance Control of a 2-DOF Spherical 5-Bar Exoskeleton for Physical Human-Robot Interaction During Rehabilitation and Assessment.
    Wolbrecht E; Ketkar V; Perry JC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise intensity of robot-assisted walking versus overground walking in nonambulatory stroke patients.
    van Nunen MP; Gerrits KH; de Haan A; Janssen TW
    J Rehabil Res Dev; 2012; 49(10):1537-46. PubMed ID: 23516057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical human interaction for an inflatable manipulator.
    Sanan S; Ornstein MH; Atkeson CG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7401-4. PubMed ID: 22256049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidirectional transparent support for overground gait training.
    Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.