These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36355971)

  • 1. Isolation and Characterization of
    Gan M; Hu J; Wan K; Liu X; Chen P; Zeng R; Wang F; Zhao Y
    Toxics; 2022 Nov; 10(11):. PubMed ID: 36355971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Mechanism Assessment of Zearalenone Removal by Plant-Derived
    Adunphatcharaphon S; Petchkongkaew A; Visessanguan W
    Toxins (Basel); 2021 Apr; 13(4):. PubMed ID: 33921591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of zearalenone and zearalenols to their major glucuronide metabolites reduces estrogenic activity.
    Frizzell C; Uhlig S; Miles CO; Verhaegen S; Elliott CT; Eriksen GS; Sørlie M; Ropstad E; Connolly L
    Toxicol In Vitro; 2015 Apr; 29(3):575-81. PubMed ID: 25645597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms of the cytotoxic effects of the zearalenone metabolites α-zearalenol and β-zearalenol on RAW264.7 macrophages.
    Lu J; Yu JY; Lim SS; Son YO; Kim DH; Lee SA; Shi X; Lee JC
    Toxicol In Vitro; 2013 Apr; 27(3):1007-17. PubMed ID: 23376438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway.
    Ben Salem I; Boussabbeh M; Pires Da Silva J; Guilbert A; Bacha H; Abid-Essefi S; Lemaire C
    Toxicol Appl Pharmacol; 2017 Jan; 314():82-90. PubMed ID: 27889531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and its derivative (')alpha-earalenol.
    El-Nezami H; Polychronaki N; Salminen S; Mykkänen H
    Appl Environ Microbiol; 2002 Jul; 68(7):3545-9. PubMed ID: 12089040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo induction of chromosome aberrations by alpha- and beta-zearalenols: comparison with zearalenone.
    Ayed Y; Ayed-Boussema I; Ouanes Z; Bacha H
    Mutat Res; 2011 Nov; 726(1):42-6. PubMed ID: 21889607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactobacillus paracasei BEJ01 prevents immunotoxic effects during chronic zearalenone exposure in Balb/c mice.
    Abbès S; Ben Salah-Abbès J; Sharafi H; Oueslati R; Noghabi KA
    Immunopharmacol Immunotoxicol; 2013 Jun; 35(3):341-8. PubMed ID: 23464632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis.
    Frizzell C; Ndossi D; Verhaegen S; Dahl E; Eriksen G; Sørlie M; Ropstad E; Muller M; Elliott CT; Connolly L
    Toxicol Lett; 2011 Oct; 206(2):210-7. PubMed ID: 21803136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Biotransformation Mode of Zearalenone Identified in
    Yang SB; Zheng HC; Xu JY; Zhao XY; Shu WJ; Li XM; Song H; Ma YH
    J Agric Food Chem; 2021 Jul; 69(26):7409-7419. PubMed ID: 34180240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03.
    Ben Salah-Abbès J; Belgacem H; Ezzdini K; Abdel-Wahhab MA; Abbès S
    Toxicon; 2020 Feb; 175():28-35. PubMed ID: 31830485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of zearalenone and its derivatives on porcine immune response.
    Marin DE; Taranu I; Burlacu R; Manda G; Motiu M; Neagoe I; Dragomir C; Stancu M; Calin L
    Toxicol In Vitro; 2011 Dec; 25(8):1981-8. PubMed ID: 21763767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, Characterization, and Application of
    Zhai C; Yu Y; Han J; Hu J; He D; Zhang H; Shi J; Mohamed SR; Dawood DH; Wang G; Xu J
    Foods; 2022 Apr; 11(9):. PubMed ID: 35563917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactobacillus plantarum MON03 counteracts zearalenone génotoxicty in mice: Chromosome aberrations, micronuclei, DNA fragmentation and apoptotique gene expression.
    Belgacem H; Ben Salah-Abbès J; Ezzdini K; A Abdel-Wahhab M; Zinedine A; Abbès S
    Mutat Res Genet Toxicol Environ Mutagen; 2019 Apr; 840():11-19. PubMed ID: 30857728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of zearalenone and its derivatives on the innate immune response of swine.
    Marin DE; Taranu I; Burlacu R; Tudor DS
    Toxicon; 2010 Nov; 56(6):956-63. PubMed ID: 20615424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice.
    Wang Y; Zhang J; Wang Y; Wang K; Wei H; Shen L
    Toxicon; 2018 Dec; 155():9-20. PubMed ID: 30267721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Lactic Acid Bacteria on the Fermentation Quality and Mycotoxins Concentrations of Corn Silage Infested with Mycotoxigenic Fungi.
    Li J; Wang W; Chen S; Shao T; Tao X; Yuan X
    Toxins (Basel); 2021 Oct; 13(10):. PubMed ID: 34678992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Lactobacillus paracasei strain for zearalenone binding and metabolization.
    Złoch M; Rogowska A; Pomastowski P; Railean-Plugaru V; Walczak-Skierska J; Rudnicka J; Buszewski B
    Toxicon; 2020 Jul; 181():9-18. PubMed ID: 32259554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages.
    Filya I
    J Appl Microbiol; 2003; 95(5):1080-6. PubMed ID: 14633037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of toxic effects of zearalenone and its two major metabolites alpha-zearalenol and beta-zearalenol on cultured human Caco-2 cells.
    Abid-Essefi S; Bouaziz C; Golli-Bennour EE; Ouanes Z; Bacha H
    J Biochem Mol Toxicol; 2009; 23(4):233-43. PubMed ID: 19705349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.