BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36356258)

  • 1. Specific modulation of presynaptic and recurrent inhibition of the soleus muscle during lengthening and shortening submaximal and maximal contractions.
    Papitsa A; Paizis C; Papaiordanidou M; Martin A
    J Appl Physiol (1985); 2022 Dec; 133(6):1327-1340. PubMed ID: 36356258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supraspinal Control of Recurrent Inhibition during Anisometric Contractions.
    Barrué-Belou S; Marque P; Duclay J
    Med Sci Sports Exerc; 2019 Nov; 51(11):2357-2365. PubMed ID: 31107836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions.
    Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R
    J Appl Physiol (1985); 2019 Apr; 126(4):1015-1031. PubMed ID: 30730812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury.
    Kim HE; Corcos DM; Hornby TG
    J Neurophysiol; 2015 Jul; 114(1):427-39. PubMed ID: 25972590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles.
    Duclay J; Pasquet B; Martin A; Duchateau J
    J Appl Physiol (1985); 2014 Dec; 117(12):1440-50. PubMed ID: 25324516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific modulation of corticospinal and spinal excitabilities during maximal voluntary isometric, shortening and lengthening contractions in synergist muscles.
    Duclay J; Pasquet B; Martin A; Duchateau J
    J Physiol; 2011 Jun; 589(Pt 11):2901-16. PubMed ID: 21502288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent inhibition contribution to corticomuscular coherence modulation between contraction types.
    Glories D; Duclay J
    Scand J Med Sci Sports; 2023 May; 33(5):597-608. PubMed ID: 36609914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific modulation of corticomuscular coherence during submaximal voluntary isometric, shortening and lengthening contractions.
    Glories D; Soulhol M; Amarantini D; Duclay J
    Sci Rep; 2021 Mar; 11(1):6322. PubMed ID: 33737659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of primary afferent depolarization and homosynaptic post-activation depression during passive and active lengthening, shortening and isometric conditions.
    Colard J; Jubeau M; Duclay J; Cattagni T
    Eur J Appl Physiol; 2023 Jun; 123(6):1257-1269. PubMed ID: 36781424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal reflex plasticity during maximal dynamic contractions after eccentric training.
    Duclay J; Martin A; Robbe A; Pousson M
    Med Sci Sports Exerc; 2008 Apr; 40(4):722-34. PubMed ID: 18317371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Less fatiguability in eccentric than concentric repetitive maximal muscle contractions.
    Yoshida R; Kasahara K; Murakami Y; Sato S; Nosaka K; Nakamura M
    Eur J Appl Physiol; 2023 Jul; 123(7):1553-1565. PubMed ID: 36934359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms modulating spinal excitability after nerve stimulation inducing extra torque.
    Vitry F; Papaiordanidou M; Martin A
    J Appl Physiol (1985); 2021 Sep; 131(3):1162-1175. PubMed ID: 34264132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction.
    Duclay J; Martin A
    J Neurophysiol; 2005 Nov; 94(5):3555-62. PubMed ID: 16049144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural adaptations to submaximal isokinetic eccentric strength training.
    Barrué-Belou S; Amarantini D; Marque P; Duclay J
    Eur J Appl Physiol; 2016 May; 116(5):1021-30. PubMed ID: 27030127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of spinal excitability by a sub-threshold stimulation of M1 area during muscle lengthening.
    Grosprêtre S; Papaxanthis C; Martin A
    Neuroscience; 2014 Mar; 263():60-71. PubMed ID: 24434774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticospinal excitability during shortening and lengthening actions with incremental torque output.
    Škarabot J; Tallent J; Goodall S; Durbaba R; Howatson G
    Exp Physiol; 2018 Dec; 103(12):1586-1592. PubMed ID: 30286253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of motor output between young and elderly subjects.
    Earles D; Vardaxis V; Koceja D
    Clin Neurophysiol; 2001 Jul; 112(7):1273-9. PubMed ID: 11516739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent inhibition is higher in eccentric compared to isometric and concentric maximal voluntary contractions.
    Barrué-Belou S; Marque P; Duclay J
    Acta Physiol (Oxf); 2018 Aug; 223(4):e13064. PubMed ID: 29575639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of angular velocity on soleus and medial gastrocnemius H-reflex during maximal concentric and eccentric muscle contraction.
    Duclay J; Robbe A; Pousson M; Martin A
    J Electromyogr Kinesiol; 2009 Oct; 19(5):948-56. PubMed ID: 18555699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The force-velocity relationship of the human soleus muscle during submaximal voluntary lengthening actions.
    Pinniger GJ; Steele JR; Cresswell AG
    Eur J Appl Physiol; 2003 Sep; 90(1-2):191-8. PubMed ID: 14504953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.