These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 36356454)
1. Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting. Liu W; Shi T; Feng Z J Colloid Interface Sci; 2023 Jan; 630(Pt B):888-899. PubMed ID: 36356454 [TBL] [Abstract][Full Text] [Related]
2. Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Qian Q; Zhang J; Li J; Li Y; Jin X; Zhu Y; Liu Y; Li Z; El-Harairy A; Xiao C; Zhang G; Xie Y Angew Chem Int Ed Engl; 2021 Mar; 60(11):5984-5993. PubMed ID: 33306263 [TBL] [Abstract][Full Text] [Related]
3. Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocatalyst for high-efficiency overall hydrazine splitting. Ao Y; Chen S; Wang C; Lu X J Colloid Interface Sci; 2021 Nov; 601():495-504. PubMed ID: 34090027 [TBL] [Abstract][Full Text] [Related]
4. Partial oxidation of Rh/Ru nanoparticles within carbon nanofibers for high-efficiency hydrazine oxidation-assisted hydrogen generation. Xu J; Zhong M; Yan S; Chen X; Li W; Xu M; Wang C; Lu X J Colloid Interface Sci; 2025 Feb; 679(Pt A):171-180. PubMed ID: 39362142 [TBL] [Abstract][Full Text] [Related]
5. Ultrathin NiSe Nanosheets on Ni Foam for Efficient and Durable Hydrazine-Assisted Electrolytic Hydrogen Production. Li Y; Zhao Y; Li FM; Dang Z; Gao P ACS Appl Mater Interfaces; 2021 Jul; 13(29):34457-34467. PubMed ID: 34261314 [TBL] [Abstract][Full Text] [Related]
6. A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Feng Z; Wang E; Huang S; Liu J Nanoscale; 2020 Feb; 12(7):4426-4434. PubMed ID: 32026923 [TBL] [Abstract][Full Text] [Related]
7. Hydrazine-Assisted Acidic Water Splitting Driven by Iridium Single Atoms. Luo F; Pan S; Xie Y; Li C; Yu Y; Bao H; Yang Z Adv Sci (Weinh); 2023 Nov; 10(32):e2305058. PubMed ID: 37775308 [TBL] [Abstract][Full Text] [Related]
8. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Peng X; Hou J; Mi Y; Sun J; Qi G; Qin Y; Zhang S; Qiu Y; Luo J; Liu X Nanoscale; 2021 Mar; 13(9):4767-4773. PubMed ID: 33650623 [TBL] [Abstract][Full Text] [Related]
9. Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H Hu Y; Chao T; Li Y; Liu P; Zhao T; Yu G; Chen C; Liang X; Jin H; Niu S; Chen W; Wang D; Li Y Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308800. PubMed ID: 37428114 [TBL] [Abstract][Full Text] [Related]
10. Superhydrophilic Ni-based Multicomponent Nanorod-Confined-Nanoflake Array Electrode Achieves Waste-Battery-Driven Hydrogen Evolution and Hydrazine Oxidation. Li Y; Li J; Qian Q; Jin X; Liu Y; Li Z; Zhu Y; Guo Y; Zhang G Small; 2021 May; 17(19):e2008148. PubMed ID: 33768679 [TBL] [Abstract][Full Text] [Related]
11. Robust and Highly Efficient Electrochemical Hydrogen Production from Hydrazine-Assisted Water Electrolysis Enabled by the Metal-Support Interaction of Ru/C Composites. Wang W; Qian Q; Li Y; Zhu Y; Feng Y; Cheng M; Zhang H; Zhang Y; Zhang G ACS Appl Mater Interfaces; 2023 Jun; 15(22):26852-26862. PubMed ID: 37225429 [TBL] [Abstract][Full Text] [Related]
12. Anion-modulated CoP electrode as bifunctional electrocatalyst for anion-exchange membrane hydrazine-assisted water electrolyser. Li K; Tong Y; He J; Liu XY; Chen P Mater Horiz; 2023 Oct; 10(11):5277-5287. PubMed ID: 37750287 [TBL] [Abstract][Full Text] [Related]
13. Self-Limited Formation of Cobalt Nanoparticles for Spontaneous Hydrogen Production through Hydrazine Electrooxidation. Liu Q; Tan X; Liao X; Lv J; Li X; Chen Z; Yang Y; Wu A; Zhao Y; Wu HB Small; 2024 Aug; 20(32):e2311741. PubMed ID: 38470196 [TBL] [Abstract][Full Text] [Related]
14. NiFeP nanosheets for efficient and durable hydrazine-assisted electrolytic hydrogen production. Hou J; Mei K; Jiang T; Yu X; Wu M Dalton Trans; 2024 Mar; 53(10):4574-4579. PubMed ID: 38349199 [TBL] [Abstract][Full Text] [Related]
15. Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production. Zhang H; Feng Z; Wang L; Li D; Xing P Nanotechnology; 2020 Sep; 31(36):365701. PubMed ID: 32413873 [TBL] [Abstract][Full Text] [Related]
17. Highly enhanced hydrazine oxidation on bifunctional Ni tailored by alloying for energy-efficient hydrogen production. Zhao Y; Sun Y; Li H; Zeng S; Li R; Yao Q; Chen H; Zheng Y; Qu K J Colloid Interface Sci; 2023 Dec; 652(Pt B):1848-1856. PubMed ID: 37683412 [TBL] [Abstract][Full Text] [Related]
18. MOF Template-Derived Carbon Shell-Embedded CoP Hierarchical Nanosheet as Bifunctional Catalyst for Overall Water Splitting. Liu MJ; Yang FH; Mei JC; Guo X; Wang HY; He MY; Yao YA; Zhang HF; Liu CB Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686929 [TBL] [Abstract][Full Text] [Related]
19. 1D/3D Heterogeneous Assembling Body of Cobalt Nitrides for Highly Efficient Overall Hydrazine Splitting and Supercapacitors. Xiong D; He X; Liu X; Gong S; Xu C; Tu Z; Wu D; Wang J; Chen Z Small; 2024 Feb; 20(8):e2306100. PubMed ID: 37817367 [TBL] [Abstract][Full Text] [Related]
20. Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery. Wang HY; Wang L; Ren JT; Tian WW; Sun ML; Yuan ZY Nanomicro Lett; 2023 Jun; 15(1):155. PubMed ID: 37337062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]