These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 36356544)
1. Over-expression of GGP1 and GPP genes enhances ascorbate content and nutritional quality of tomato. Koukounaras A; Mellidou I; Patelou E; Kostas S; Shukla V; Engineer C; Papaefthimiou D; Amari F; Chatzopoulos D; Mattoo AK; Kanellis AK Plant Physiol Biochem; 2022 Dec; 193():124-138. PubMed ID: 36356544 [TBL] [Abstract][Full Text] [Related]
2. Deficiency of GDP-L-galactose phosphorylase, an enzyme required for ascorbic acid synthesis, reduces tomato fruit yield. Alegre ML; Steelheart C; Baldet P; Rothan C; Just D; Okabe Y; Ezura H; Smirnoff N; Gergoff Grozeff GE; Bartoli CG Planta; 2020 Jan; 251(2):54. PubMed ID: 31970534 [TBL] [Abstract][Full Text] [Related]
3. Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato. Li X; Ye J; Munir S; Yang T; Chen W; Liu G; Zheng W; Zhang Y Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30925709 [TBL] [Abstract][Full Text] [Related]
4. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Bulley S; Wright M; Rommens C; Yan H; Rassam M; Lin-Wang K; Andre C; Brewster D; Karunairetnam S; Allan AC; Laing WA Plant Biotechnol J; 2012 May; 10(4):390-7. PubMed ID: 22129455 [TBL] [Abstract][Full Text] [Related]
5. Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. Mellidou I; Keulemans J; Kanellis AK; Davey MW BMC Plant Biol; 2012 Dec; 12():239. PubMed ID: 23245200 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Cronje C; George GM; Fernie AR; Bekker J; Kossmann J; Bauer R Planta; 2012 Mar; 235(3):553-64. PubMed ID: 21979413 [TBL] [Abstract][Full Text] [Related]
7. Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. Li M; Ma F; Liang D; Li J; Wang Y PLoS One; 2010 Dec; 5(12):e14281. PubMed ID: 21151561 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of tomato GDP-L-galactose phosphorylase gene in tobacco improves tolerance to chilling stress. Wang L; Meng X; Yang D; Ma N; Wang G; Meng Q Plant Cell Rep; 2014 Sep; 33(9):1441-51. PubMed ID: 24832771 [TBL] [Abstract][Full Text] [Related]
10. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Massot C; Stevens R; Génard M; Longuenesse JJ; Gautier H Planta; 2012 Jan; 235(1):153-63. PubMed ID: 21861113 [TBL] [Abstract][Full Text] [Related]
11. Antisense-mediated depletion of tomato GDP-L-galactose phosphorylase increases susceptibility to chilling stress. Wang LY; Li D; Deng YS; Lv W; Meng QW J Plant Physiol; 2013 Feb; 170(3):303-14. PubMed ID: 23267461 [TBL] [Abstract][Full Text] [Related]
12. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Hu T; Ye J; Tao P; Li H; Zhang J; Zhang Y; Ye Z Plant J; 2016 Jan; 85(1):16-29. PubMed ID: 26610866 [TBL] [Abstract][Full Text] [Related]
13. Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Ren J; Chen Z; Duan W; Song X; Liu T; Wang J; Hou X; Li Y Plant Physiol Biochem; 2013 Dec; 73():229-36. PubMed ID: 24157701 [TBL] [Abstract][Full Text] [Related]
14. Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper γ-aminobutyric acid (GABA) accumulation in tomato fruit. Takayama M; Matsukura C; Ariizumi T; Ezura H Plant Cell Rep; 2017 Jan; 36(1):103-116. PubMed ID: 27704232 [TBL] [Abstract][Full Text] [Related]
15. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening. Chen C; Zhang M; Zhang M; Yang M; Dai S; Meng Q; Lv W; Zhuang K Plant Physiol; 2023 Jul; 192(3):2067-2080. PubMed ID: 36891812 [TBL] [Abstract][Full Text] [Related]
16. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. Ioannidi E; Kalamaki MS; Engineer C; Pateraki I; Alexandrou D; Mellidou I; Giovannonni J; Kanellis AK J Exp Bot; 2009; 60(2):663-78. PubMed ID: 19129160 [TBL] [Abstract][Full Text] [Related]
17. Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Amaya I; Osorio S; Martinez-Ferri E; Lima-Silva V; Doblas VG; Fernández-Muñoz R; Fernie AR; Botella MA; Valpuesta V Biotechnol J; 2015 Mar; 10(3):490-500. PubMed ID: 25143316 [TBL] [Abstract][Full Text] [Related]
18. Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Mellidou I; Chagné D; Laing WA; Keulemans J; Davey MW Plant Physiol; 2012 Nov; 160(3):1613-29. PubMed ID: 23001142 [TBL] [Abstract][Full Text] [Related]
19. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Sravankumar T; Akash ; Naik N; Kumar R Plant Mol Biol; 2018 Nov; 98(4-5):455-469. PubMed ID: 30367324 [TBL] [Abstract][Full Text] [Related]
20. A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit. Dong T; Chen G; Tian S; Xie Q; Yin W; Zhang Y; Hu Z PLoS One; 2014; 9(4):e95559. PubMed ID: 24751940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]