These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36357421)
1. Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification. Jia Z; Qin X; Chen Y; Cai X; Gao Z; Peng M; Huang F; Xiao D; Wen X; Wang N; Jiang Z; Zhou W; Liu H; Ma D Nat Commun; 2022 Nov; 13(1):6798. PubMed ID: 36357421 [TBL] [Abstract][Full Text] [Related]
2. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H Cao L; Liu W; Luo Q; Yin R; Wang B; Weissenrieder J; Soldemo M; Yan H; Lin Y; Sun Z; Ma C; Zhang W; Chen S; Wang H; Guan Q; Yao T; Wei S; Yang J; Lu J Nature; 2019 Jan; 565(7741):631-635. PubMed ID: 30700869 [TBL] [Abstract][Full Text] [Related]
3. Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 catalysts. Siani A; Captain B; Alexeev OS; Stafyla E; Hungria AB; Midgley PA; Thomas JM; Adams RD; Amiridis MD Langmuir; 2006 May; 22(11):5160-7. PubMed ID: 16700608 [TBL] [Abstract][Full Text] [Related]
4. Nanoporous Single-Crystalline Oxide Catalysts for Preferential Oxidation of CO in H Li W; Xie K Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202212489. PubMed ID: 36263760 [TBL] [Abstract][Full Text] [Related]
5. Highly Ordered and Thermally Stable FeRh Cluster Superlattice on Graphene for Low-Temperature Catalytic CO Oxidation. Yin H; de Groot JG; Brune H Chemphyschem; 2023 Mar; 24(6):e202200648. PubMed ID: 36380531 [TBL] [Abstract][Full Text] [Related]
6. High-loading single Pt atom sites [Pt-O(OH) Cao S; Zhao Y; Lee S; Yang S; Liu J; Giannakakis G; Li M; Ouyang M; Wang D; Sykes ECH; Flytzani-Stephanopoulos M Sci Adv; 2020 Jun; 6(25):eaba3809. PubMed ID: 32596455 [TBL] [Abstract][Full Text] [Related]
7. Innovative Charge-Tuning for Highly Dispersed Pt Catalysts: Achieving Deep CO Removal in Industrial H Song X; Ke S; Ye Q; Kang W; Guan Q; Deng Z ACS Appl Mater Interfaces; 2024 Oct; 16(39):52529-52538. PubMed ID: 39291640 [TBL] [Abstract][Full Text] [Related]
8. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102 [TBL] [Abstract][Full Text] [Related]
9. Reducing the Cost and Preserving the Reactivity in Noble-Metal-Based Catalysts: Oxidation of CO by Pt and Al-Pt Alloy Clusters Supported on Graphene. Koizumi K; Nobusada K; Boero M Chemistry; 2016 Apr; 22(15):5181-8. PubMed ID: 26878836 [TBL] [Abstract][Full Text] [Related]
10. Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature. Wang Y; Ren P; Hu J; Tu Y; Gong Z; Cui Y; Zheng Y; Chen M; Zhang W; Ma C; Yu L; Yang F; Wang Y; Bao X; Deng D Nat Commun; 2021 Oct; 12(1):5814. PubMed ID: 34608162 [TBL] [Abstract][Full Text] [Related]
11. Inverse gas chromatographic investigation of the effect of hydrogen in carbon monoxide adsorption over silica supported Rh and Pt-Rh alloy catalysts, under hydrogen-rich conditions. Gavril D; Loukopoulos V; Georgaka A; Gabriel A; Karaiskakis G J Chromatogr A; 2005 Sep; 1087(1-2):158-68. PubMed ID: 16130709 [TBL] [Abstract][Full Text] [Related]
12. A Tale of Two Sites: Neighboring Atomically Dispersed Pt Sites Cooperatively Remove Trace H Rao Y; Wu Y; Dai X; Zhang YW; Qin G; Qi W; Li S Small; 2022 Dec; 18(51):e2204611. PubMed ID: 36257908 [TBL] [Abstract][Full Text] [Related]
13. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms. Wei K; Wang X; Ge J Chem Soc Rev; 2024 Aug; 53(17):8903-8948. PubMed ID: 39129479 [TBL] [Abstract][Full Text] [Related]
14. Near-Atomic-Scale Superfine Alloy Clusters for Ultrastable Acidic Hydrogen Electrocatalysis. Chen G; Chen W; Lu R; Ma C; Zhang Z; Huang Z; Weng J; Wang Z; Han Y; Huang W J Am Chem Soc; 2023 Oct; 145(40):22069-22078. PubMed ID: 37774141 [TBL] [Abstract][Full Text] [Related]
15. Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations. Su HY; Bao XH; Li WX J Chem Phys; 2008 May; 128(19):194707. PubMed ID: 18500886 [TBL] [Abstract][Full Text] [Related]
16. Breaking Continuously Packed Bimetallic Sites to Singly Dispersed on Nonmetallic Support for Efficient Hydrogen Production. Jiang T; Li Y; Tang Y; Zhang S; Le D; Rahman TS; Tao F ACS Appl Mater Interfaces; 2024 May; 16(17):21757-21770. PubMed ID: 38632669 [TBL] [Abstract][Full Text] [Related]
17. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes. Hassan A; Ticianelli EA An Acad Bras Cienc; 2018; 90(1 Suppl 1):697-718. PubMed ID: 29668800 [TBL] [Abstract][Full Text] [Related]
18. High Catalytic Performance of Au/Bi Chen J; Wang C; Zong C; Chen S; Wang P; Chen Q ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34133119 [TBL] [Abstract][Full Text] [Related]