BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36357465)

  • 1. Green enhancement of wood plastic composite based on agriculture wastes compatibility via fungal enzymes.
    Hasanin MS; Abd El-Aziz ME; El-Nagar I; Hassan YR; Youssef AM
    Sci Rep; 2022 Nov; 12(1):19197. PubMed ID: 36357465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers.
    Youssef AM; Hasanin MS; Abd El-Aziz ME; Darwesh OM
    Heliyon; 2019 Mar; 5(3):e01332. PubMed ID: 30923764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of agricultural waste/recycled plastic/waste oil bio-composite wallpaper based on two-phase dye and liquefaction filling technology.
    Xiao D; Yu Z; Qing S; Du S; Xiao H
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):2599-2621. PubMed ID: 31832960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of plastic blends made from mixed plastics waste of different sources.
    Turku I; Kärki T; Rinne K; Puurtinen A
    Waste Manag Res; 2017 Feb; 35(2):200-206. PubMed ID: 27889697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy of waste plastics and natural fibers as sustainable composites for structural applications concerning circular economy.
    Soni A; Kumar S; Majumder B; Dam H; Dutta V; Das PK
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):38846-38865. PubMed ID: 36930307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of recycled plastics in wood plastic composites - a review.
    Kazemi Najafi S
    Waste Manag; 2013 Sep; 33(9):1898-905. PubMed ID: 23777666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.
    Gu F; Guo J; Zhang W; Summers PA; Hall P
    Sci Total Environ; 2017 Dec; 601-602():1192-1207. PubMed ID: 28605837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5.
    Awasthi S; Srivastava N; Singh T; Tiwary D; Mishra PK
    3 Biotech; 2017 May; 7(1):73. PubMed ID: 28452021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing anti-microbial properties of wood-plastic composites produced from timber and plastic wastes.
    Wang L; Chen SS; Tsang DCW; Poon CS; Ok YS
    Environ Sci Pollut Res Int; 2017 May; 24(13):12227-12237. PubMed ID: 28353107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and mechanical characterization of composite materials from industrial plastic wastes and recycled nylon fibers for floor paving tiles application.
    Owen MM; Achukwu EO; Romli AZ; Abdullah AHB; Ramlee MH; Shuib SB
    Waste Manag; 2023 Jul; 166():25-34. PubMed ID: 37141784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: Degradation mechanism and pathway.
    Elsamahy T; Sun J; Elsilk SE; Ali SS
    J Hazard Mater; 2023 Apr; 448():130944. PubMed ID: 36860037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC.
    Rao J; Zhou Y; Fan M
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).
    Lei Y; Wu Q
    Bioresour Technol; 2010 May; 101(10):3665-71. PubMed ID: 20100654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level.
    Epure EL; Cojocaru FD; Aradoaei M; Ciobanu RC; Dodi G
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Characterization of Environmentally Friendly Wood Plastic Composites from Biobased Polyethylene and Short Natural Fibers Processed by Injection Moulding.
    Dolza C; Fages E; Gonga E; Gomez-Caturla J; Balart R; Quiles-Carrillo L
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34067283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Closed-Loop Recycling of Ultra-High-Filled Wood Flour/Dynamic Polyurethane Composites.
    Guo S; Wang H; Liu Y; Fu Y; Zhang X; Qi B; Liu T
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.
    Sommerhuber PF; Welling J; Krause A
    Waste Manag; 2015 Dec; 46():76-85. PubMed ID: 26376122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Waste Engine Oil and Waste Polyethylene on UV Aging Resistance of Asphalt.
    Peng C; Guo C; You Z; Xu F; Ma W; You L; Li T; Zhou L; Huang S; Ma H; Lu L
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32155867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential use of waste from tree pruning and recovered plastic to obtain a building material: Case study of Merida, Mexico.
    Cruz-Estrada RH; Guillén-Mallette J; Cupul-Manzano CV; Balam-Hernández JI
    Waste Manag Res; 2020 Nov; 38(11):1222-1230. PubMed ID: 32500826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.