These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36357485)

  • 1. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency.
    Takahashi K
    Sci Rep; 2021 Feb; 11(1):2768. PubMed ID: 33531602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization, Test and Diagnostics of Miniaturized Hall Thrusters.
    Lim JWM; Levchenko I; Rohaizat MWAB; Huang S; Xu L; Sun YF; Potrivitu GC; Yee JS; Sim RZW; Wang Y; Levchenko S; Bazaka K; Xu S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially- and vector-resolved momentum flux lost to a wall in a magnetic nozzle rf plasma thruster.
    Takahashi K; Sugawara T; Ando A
    Sci Rep; 2020 Jan; 10(1):1061. PubMed ID: 31974470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 100 KW Class Applied-field Magnetoplasmadynamic Thruster.
    Wang B; Tang H; Wang Y; Lu C; Zhou C; Dong Y; Wang G; Cong Y; Luu D; Cao J
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30614493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlaboratory validation of a hanging pendulum thrust balance for electric propulsion testing.
    Schwertheim A; Rosati Azevedo E; Liu G; Bosch Borràs E; Bianchi L; Knoll A
    Rev Sci Instrum; 2021 Mar; 92(3):034502. PubMed ID: 33820057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and experimental results of a laser-ignited solid-propellant-fed magnetoplasmadynamic thruster.
    Ou Y; Wu J; Zhang Y
    Rev Sci Instrum; 2020 Jul; 91(7):074501. PubMed ID: 32752859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of inverted pendulum thrust stand with spring-shaped wire for high power electric thrusters.
    Yamasaki J; Nonaka M; Yokota S; Shimamura K
    Rev Sci Instrum; 2023 Mar; 94(3):034501. PubMed ID: 37012807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thrust stand based on a single point load cell for impulse measurements from plasma thrusters.
    Conde L; Lahoz MD; Grabulosa J; Hernández R; González J; Delgado M; Damba J
    Rev Sci Instrum; 2020 Feb; 91(2):023308. PubMed ID: 32113423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space Electroosmotic Thrusters in Ion Partitioning Soft Nanochannels.
    Zheng J; Jian Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field measurement in microwave discharge ion thruster with electro-optic probe.
    Ise T; Tsukizaki R; Togo H; Koizumi H; Kuninaka H
    Rev Sci Instrum; 2012 Dec; 83(12):124702. PubMed ID: 23278009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thrust stand for vertically oriented electric propulsion performance evaluation.
    Moeller T; Polzin KA
    Rev Sci Instrum; 2010 Nov; 81(11):115108. PubMed ID: 21133502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion.
    Dey I; Toyoda Y; Yamamoto N; Nakashima H
    Rev Sci Instrum; 2015 Dec; 86(12):123505. PubMed ID: 26724025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstrating a new technology for space debris removal using a bi-directional plasma thruster.
    Takahashi K; Charles C; Boswell RW; Ando A
    Sci Rep; 2018 Sep; 8(1):14417. PubMed ID: 30258208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of plasma noise on a direct thrust measurement system.
    Pottinger SJ; Lamprou D; Knoll AK; Lappas VJ
    Rev Sci Instrum; 2012 Mar; 83(3):033504. PubMed ID: 22462919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. rf power system for thrust measurements of a helicon plasma source.
    Kieckhafer AW; Walker ML
    Rev Sci Instrum; 2010 Jul; 81(7):075106. PubMed ID: 20687758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-millinewton thrust stand and wireless power coupler for microwave-powered small satellite thrusters.
    Wachs BN; Jorns BA
    Rev Sci Instrum; 2022 Aug; 93(8):083507. PubMed ID: 36050119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.