These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36357487)
21. Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study. Bazalova-Carter M; Ahmad M; Xing L; Fahrig R J Med Imaging (Bellingham); 2015 Oct; 2(4):043501. PubMed ID: 26839910 [TBL] [Abstract][Full Text] [Related]
22. Use of the Bethe Equation for Inner-Shell Ionization by Electron Impact. Powell CJ; Llovet X; Salvat F J Appl Phys; 2016 May; 119(18):. PubMed ID: 27546903 [TBL] [Abstract][Full Text] [Related]
24. Measurement of Cu K-shell and Ag L-shell ionization cross sections by low-energy positron impact. Nagashima Y; Saito F; Itoh Y; Goto A; Hyodo T Phys Rev Lett; 2004 Jun; 92(22):223201. PubMed ID: 15245220 [TBL] [Abstract][Full Text] [Related]
25. Methods to determine the fluorescence and Auger spectra due to decay of radionuclides or due to a single atomic-subshell ionization and comparisons with experiments. Stepanek J Med Phys; 2000 Jul; 27(7):1544-54. PubMed ID: 10947257 [TBL] [Abstract][Full Text] [Related]
26. L- and M-shell x-ray production cross sections of Nd, Gd, Ho, Yb, Au, and Pb by 25-MeV carbon and 32-MeV oxygen ions. Andrews MC; McDaniel FD; Duggan JL; Miller PD; Pepmiller PL; Krause HF; Rosseel TM; Rayburn LA; Mehta R; Lapicki G Phys Rev A Gen Phys; 1987 Oct; 36(8):3699-3706. PubMed ID: 9899304 [No Abstract] [Full Text] [Related]
27. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles. Hespeels F; Lucas S; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Tran HN; Heuskin AC Phys Med Biol; 2019 Mar; 64(6):065014. PubMed ID: 30731439 [TBL] [Abstract][Full Text] [Related]
28. Heavy ion inactivation in Escherichia coli cells: experiment and theory. Schäfer M Int J Radiat Biol; 1996 Apr; 69(4):459-69. PubMed ID: 8627128 [TBL] [Abstract][Full Text] [Related]
29. Photon W value for krypton in the M-shell transition region. Saito N; Suzuki IH Radiat Res; 2001 Sep; 156(3):317-23. PubMed ID: 11500141 [TBL] [Abstract][Full Text] [Related]
30. Track-average LET of secondary electrons generated in LiF:Mg,Ti and liquid water by 20-300 kV x-ray, Cabrera-Santiago A; Massillon-Jl G Phys Med Biol; 2016 Nov; 61(22):7919-7933. PubMed ID: 27779122 [TBL] [Abstract][Full Text] [Related]
31. L-subshell ionization cross sections in gold and bismuth by 3.6-9.5-MeV carbon and 4.0-7.2-MeV oxygen ions. Bhattacharya D; Sarkar M; Chatterjee MB; Sen P; Kuri G; Mahapatra DP; Lapicki G Phys Rev A; 1994 Jun; 49(6):4616-4623. PubMed ID: 9910780 [No Abstract] [Full Text] [Related]
32. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Seo SJ; Han SM; Cho JH; Hyodo K; Zaboronok A; You H; Peach K; Hill MA; Kim JK Radiat Environ Biophys; 2015 Nov; 54(4):423-31. PubMed ID: 26242374 [TBL] [Abstract][Full Text] [Related]
33. Theoretical and Experimental Compton Scattering Cross Sections at 1.12 MeV in the Case of Strongly Bound Baba Prasad PN; Kane PP J Res Natl Bur Stand A Phys Chem; 1974; 78A(4):461-463. PubMed ID: 32189796 [TBL] [Abstract][Full Text] [Related]
34. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value. Seo SJ; Jeon JK; Han SM; Kim JK Int J Radiat Biol; 2017 Nov; 93(11):1239-1247. PubMed ID: 28752783 [TBL] [Abstract][Full Text] [Related]
35. Possibility of using a low-energy proton beam for particle-induced X-ray emission microanalysis. el-Ghawi UM; Bahal BM; al-Arbi SK Radiat Res; 1992 Sep; 131(3):243-8. PubMed ID: 1332106 [TBL] [Abstract][Full Text] [Related]
37. An investigation of enhanced secondary ion emission under Au(n)+ (n = 1-7) bombardment. Nagy G; Gelb LD; Walker AV J Am Soc Mass Spectrom; 2005 May; 16(5):733-42. PubMed ID: 15862774 [TBL] [Abstract][Full Text] [Related]
38. Optimizing irradiation treatment of shell eggs using simulation. Kim J; Moreira RG; Castell-Perez E J Food Sci; 2011; 76(1):E173-7. PubMed ID: 21535670 [TBL] [Abstract][Full Text] [Related]
39. Measurement of L3 subshell fluorescence yields of some elements in the atomic range 57 < or = Z < or = 68 using photoionisation. Ertugrul M Appl Radiat Isot; 2002 Jul; 57(1):57-61. PubMed ID: 12137027 [TBL] [Abstract][Full Text] [Related]
40. Distinctive Energy Profile of Water-Soluble, Thiolate-Protected Gold Nanoparticles as Potential Molecular Marker for Vulnerable Plaque Detection with XFCT Imaging. Zaman RT; Vernekhol D; Xing L J Radiol Radiat Ther; 2020; 8(1):. PubMed ID: 35822084 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]