BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36358291)

  • 1. Lipid-Derived Aldehydes: New Key Mediators of Plant Growth and Stress Responses.
    Liang X; Qian R; Wang D; Liu L; Sun C; Lin X
    Biology (Basel); 2022 Oct; 11(11):. PubMed ID: 36358291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.
    Hasanuzzaman M; Nahar K; Hossain MS; Mahmud JA; Rahman A; Inafuku M; Oku H; Fujita M
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylglyoxal - a signaling molecule in plant abiotic stress responses.
    Mostofa MG; Ghosh A; Li ZG; Siddiqui MN; Fujita M; Tran LP
    Free Radic Biol Med; 2018 Jul; 122():96-109. PubMed ID: 29545071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications.
    Xie Z; Baba SP; Sweeney BR; Barski OA
    Chem Biol Interact; 2013 Feb; 202(1-3):288-97. PubMed ID: 23313711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aldehyde dehydrogenase 3I1 gene is recruited in conferring multiple abiotic stress tolerance in plants.
    Raza H; Khan MR; Zafar SA; Kirch HH; Bartles D
    Plant Biol (Stuttg); 2022 Jan; 24(1):85-94. PubMed ID: 34670007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator.
    Hasanuzzaman M; Bhuyan MHMB; Zulfiqar F; Raza A; Mohsin SM; Mahmud JA; Fujita M; Fotopoulos V
    Antioxidants (Basel); 2020 Jul; 9(8):. PubMed ID: 32751256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses.
    Oberschall A; Deák M; Török K; Sass L; Vass I; Kovács I; Fehér A; Dudits D; Horváth GV
    Plant J; 2000 Nov; 24(4):437-46. PubMed ID: 11115125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells.
    Maulucci G; Daniel B; Cohen O; Avrahami Y; Sasson S
    Mol Aspects Med; 2016 Jun; 49():49-77. PubMed ID: 27012748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin: Awakening the Defense Mechanisms during Plant Oxidative Stress.
    Khan A; Numan M; Khan AL; Lee IJ; Imran M; Asaf S; Al-Harrasi A
    Plants (Basel); 2020 Mar; 9(4):. PubMed ID: 32218185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct roles of jasmonates and aldehydes in plant-defense responses.
    Chehab EW; Kaspi R; Savchenko T; Rowe H; Negre-Zakharov F; Kliebenstein D; Dehesh K
    PLoS One; 2008 Apr; 3(4):e1904. PubMed ID: 18382679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ROS Regulation During Abiotic Stress Responses in Crop Plants.
    You J; Chan Z
    Front Plant Sci; 2015; 6():1092. PubMed ID: 26697045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance to drought and salt stress in plants: Unraveling the signaling networks.
    Golldack D; Li C; Mohan H; Probst N
    Front Plant Sci; 2014; 5():151. PubMed ID: 24795738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidants and HNE in redox homeostasis.
    Łuczaj W; Gęgotek A; Skrzydlewska E
    Free Radic Biol Med; 2017 Oct; 111():87-101. PubMed ID: 27888001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants.
    Ali MS; Baek KH
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin Ameliorates Thermotolerance in Soybean Seedling through Balancing Redox Homeostasis and Modulating Antioxidant Defense, Phytohormones and Polyamines Biosynthesis.
    Imran M; Aaqil Khan M; Shahzad R; Bilal S; Khan M; Yun BW; Khan AL; Lee IJ
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants.
    Ye Y; Ding Y; Jiang Q; Wang F; Sun J; Zhu C
    Plant Cell Rep; 2017 Feb; 36(2):235-242. PubMed ID: 27933379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling.
    Tola AJ; Jaballi A; Germain H; Missihoun TD
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants.
    Raza A; Charagh S; Zahid Z; Mubarik MS; Javed R; Siddiqui MH; Hasanuzzaman M
    Plant Cell Rep; 2021 Aug; 40(8):1513-1541. PubMed ID: 33034676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.