These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 36359121)

  • 1. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition.
    Sari NF; Ray P; Rymer C; Kliem KE; Stergiadis S
    Animals (Basel); 2022 Oct; 12(21):. PubMed ID: 36359121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of fenugreek in ruminant feed: implications for methane emissions and productivity.
    Zeng X; Chen Y; Li W; Liu S
    PeerJ; 2024; 12():e16842. PubMed ID: 38313019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the Impact of Different Dietary Rumen Modulating Strategies on Enteric Methane Emission and Productivity in Ruminant Livestock: A Meta-Analysis.
    Pepeta BN; Hassen A; Tesfamariam EH
    Animals (Basel); 2024 Feb; 14(5):. PubMed ID: 38473148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options.
    Min BR; Solaiman S; Waldrip HM; Parker D; Todd RW; Brauer D
    Anim Nutr; 2020 Sep; 6(3):231-246. PubMed ID: 33005757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options.
    Hristov AN; Oh J; Firkins JL; Dijkstra J; Kebreab E; Waghorn G; Makkar HP; Adesogan AT; Yang W; Lee C; Gerber PJ; Henderson B; Tricarico JM
    J Anim Sci; 2013 Nov; 91(11):5045-69. PubMed ID: 24045497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions.
    Knapp JR; Laur GL; Vadas PA; Weiss WP; Tricarico JM
    J Dairy Sci; 2014; 97(6):3231-61. PubMed ID: 24746124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enteric methane emissions, growth, and carcass characteristics of feedlot steers fed a garlic- and citrus-based feed additive in diets with three different forage concentrations.
    Bitsie B; Osorio AM; Henry DD; Silva BC; Godoi LA; Supapong C; Brand T; Schoonmaker JP
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35426435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invited review: Current enteric methane mitigation options.
    Beauchemin KA; Ungerfeld EM; Abdalla AL; Alvarez C; Arndt C; Becquet P; Benchaar C; Berndt A; Mauricio RM; McAllister TA; Oyhantçabal W; Salami SA; Shalloo L; Sun Y; Tricarico J; Uwizeye A; De Camillis C; Bernoux M; Robinson T; Kebreab E
    J Dairy Sci; 2022 Nov; 105(12):9297-9326. PubMed ID: 36270879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Strategies for enteric methane mitigation in cattle fed tropical forages.
    Ku-Vera JC; Castelán-Ortega OA; Galindo-Maldonado FA; Arango J; Chirinda N; Jiménez-Ocampo R; Valencia-Salazar SS; Flores-Santiago EJ; Montoya-Flores MD; Molina-Botero IC; Piñeiro-Vázquez AT; Arceo-Castillo JI; Aguilar-Pérez CF; Ramírez-Avilés L; Solorio-Sánchez FJ
    Animal; 2020 Sep; 14(S3):s453-s463. PubMed ID: 32807248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential use of garlic products in ruminant feeding: A review.
    Ding H; Ao C; Zhang X
    Anim Nutr; 2023 Sep; 14():343-355. PubMed ID: 37635929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could propionate formation be used to reduce enteric methane emission in ruminants?
    Wang K; Xiong B; Zhao X
    Sci Total Environ; 2023 Jan; 855():158867. PubMed ID: 36122712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential use of seaweed as a dietary supplement to mitigate enteric methane emission in ruminants.
    Wanapat M; Prachumchai R; Dagaew G; Matra M; Phupaboon S; Sommai S; Suriyapha C
    Sci Total Environ; 2024 Jun; 931():173015. PubMed ID: 38710388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants.
    Haque MN
    J Anim Sci Technol; 2018; 60():15. PubMed ID: 29946475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary sources and their effects on animal production and environmental sustainability.
    Wanapat M; Cherdthong A; Phesatcha K; Kang S
    Anim Nutr; 2015 Sep; 1(3):96-103. PubMed ID: 29767156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review: Plant Carbohydrate Types-The Potential Impact on Ruminant Methane Emissions.
    Sun X; Cheng L; Jonker A; Munidasa S; Pacheco D
    Front Vet Sci; 2022; 9():880115. PubMed ID: 35782553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Mootral-a garlic- and citrus-extract-based feed additive-on enteric methane emissions in feedlot cattle.
    Roque BM; Van Lingen HJ; Vrancken H; Kebreab E
    Transl Anim Sci; 2019 Jul; 3(4):1383-1388. PubMed ID: 32704901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.
    Dangal SRS; Tian H; Zhang B; Pan S; Lu C; Yang J
    Glob Chang Biol; 2017 Oct; 23(10):4147-4161. PubMed ID: 28370720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options.
    Hristov AN; Ott T; Tricarico J; Rotz A; Waghorn G; Adesogan A; Dijkstra J; Montes F; Oh J; Kebreab E; Oosting SJ; Gerber PJ; Henderson B; Makkar HP; Firkins JL
    J Anim Sci; 2013 Nov; 91(11):5095-113. PubMed ID: 24045470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA; Meale SJ; Valle E; Guan LL; Zhou M; Kelly WJ; Henderson G; Attwood GT; Janssen PH
    J Anim Sci; 2015 Apr; 93(4):1431-49. PubMed ID: 26020166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.