These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36359605)
1. A Second-Order Crank-Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction. Wu C; Feng X; Qian L Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359605 [TBL] [Abstract][Full Text] [Related]
2. A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations. Zhou Y; Luo Z J Inequal Appl; 2018; 2018(1):137. PubMed ID: 30137734 [TBL] [Abstract][Full Text] [Related]
3. Crank-Nicolson method for solving uncertain heat equation. Liu J; Hao Y Soft comput; 2022; 26(3):937-945. PubMed ID: 35002501 [TBL] [Abstract][Full Text] [Related]
4. A Crank-Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity-stream functions. Zhou Y; Luo Z; Teng F J Inequal Appl; 2018; 2018(1):320. PubMed ID: 30839842 [TBL] [Abstract][Full Text] [Related]
5. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation. Wang J; Li H; He S; Gao W; Liu Y ScientificWorldJournal; 2013; 2013():756281. PubMed ID: 23864831 [TBL] [Abstract][Full Text] [Related]
6. Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals. Blomgren P; Gasner S; Palacios A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036701. PubMed ID: 16241608 [TBL] [Abstract][Full Text] [Related]
7. Explicit finite-difference vector beam propagation method based on the iterated Crank-Nicolson scheme. Yioultsis TV; Ziogos GD; Kriezis EE J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2183-91. PubMed ID: 19798397 [TBL] [Abstract][Full Text] [Related]
8. Numerical Solution of Two-Dimensional Time Fractional Mobile/Immobile Equation Using Explicit Group Methods. Salama FM; Ali U; Ali A Int J Appl Comput Math; 2022; 8(4):188. PubMed ID: 35860425 [TBL] [Abstract][Full Text] [Related]
9. Extraordinary optical transmission through periodic Drude-like graphene sheets using FDTD algorithms and its unconditionally stable approximate Crank-Nicolson implementation. Wu S; Sun Y; Chi M; Chen X Sci Rep; 2020 Oct; 10(1):17462. PubMed ID: 33060774 [TBL] [Abstract][Full Text] [Related]
10. A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay. Wang W; Yi L; Xiao A J Sci Comput; 2020; 84(1):13. PubMed ID: 32834471 [TBL] [Abstract][Full Text] [Related]
11. High-order compact difference scheme for the numerical solution of time fractional heat equations. Karatay I; Bayramoglu SR ScientificWorldJournal; 2014; 2014():642989. PubMed ID: 24696040 [TBL] [Abstract][Full Text] [Related]
12. Linear B-spline finite element method for the generalized diffusion equation with delay. Lubo GT; Duressa GF BMC Res Notes; 2022 Jun; 15(1):195. PubMed ID: 35658930 [TBL] [Abstract][Full Text] [Related]
13. Numerical Convergence Analysis of the Frank-Kamenetskii Equation. Woolway M; Jacobs BA; Momoniat E; Harley C; Britz D Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285859 [TBL] [Abstract][Full Text] [Related]
14. On the convergence of a high-accuracy compact conservative scheme for the modified regularized long-wave equation. Pan X; Zhang L Springerplus; 2016; 5():474. PubMed ID: 27217989 [TBL] [Abstract][Full Text] [Related]
15. All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations. Donatelli M; Krause R; Mazza M; Trotti K Calcolo; 2021; 58(4):45. PubMed ID: 34803177 [TBL] [Abstract][Full Text] [Related]
16. Numerical modeling considerations for an applied nonlinear Schrödinger equation. Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209 [TBL] [Abstract][Full Text] [Related]
17. Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect. Novitski R; Scheuer J; Steinberg BZ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023303. PubMed ID: 23496635 [TBL] [Abstract][Full Text] [Related]
18. Numerical solutions of the time-dependent Schrödinger equation in two dimensions. van Dijk W; Vanderwoerd T; Prins SJ Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000 [TBL] [Abstract][Full Text] [Related]