BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 36359679)

  • 41. A Study on the Fault Location of Secondary Equipment in Smart Substation Based on the Graph Attention Network.
    Xiang XM; Dong XC; He JQ; Zheng YK; Li XY
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067757
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.
    Shi H; Chen J; Si J; Zheng C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Convolutional Neural Network-Based Transformer Fault Diagnosis Using Vibration Signals.
    Li C; Chen J; Yang C; Yang J; Liu Z; Davari P
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430695
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross-domain bearing fault diagnosis using dual-path convolutional neural networks and multi-parallel graph convolutional networks.
    Zhang Y; Zhang S; Zhu Y; Ke W
    ISA Trans; 2024 Jun; ():. PubMed ID: 38876952
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Multiple Attention Convolutional Neural Networks for Diesel Engine Fault Diagnosis.
    Yang X; Bi F; Cheng J; Tang D; Shen P; Bi X
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intelligent Bearing Fault Diagnosis Based on Feature Fusion of One-Dimensional Dilated CNN and Multi-Domain Signal Processing.
    Dong K; Lotfipoor A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420773
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Deep Generative Model with Multiscale Features Enabled Industrial Internet of Things for Intelligent Fault Diagnosis of Bearings.
    Hu HX; Cai Y; Hu Q; Zhang Y
    Research (Wash D C); 2023; 6():0176. PubMed ID: 37426474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Intelligent Machinery Fault Diagnosis Method Based on GAN and Transfer Learning under Variable Working Conditions.
    He W; Chen J; Zhou Y; Liu X; Chen B; Guo B
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501876
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion.
    Gong W; Chen H; Zhang Z; Zhang M; Wang R; Guan C; Wang Q
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970672
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Transfer-Based Convolutional Neural Network Model with Multi-Signal Fusion and Hyperparameter Optimization for Pump Fault Diagnosis.
    Zhang Z; Tang A; Zhang T
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bearing fault detection by using graph autoencoder and ensemble learning.
    Wang M; Yu J; Leng H; Du X; Liu Y
    Sci Rep; 2024 Mar; 14(1):5206. PubMed ID: 38433237
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Transfer Learning Framework with a One-Dimensional Deep Subdomain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions.
    Zhang R; Gu Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214528
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Research on a Bearing Fault Enhancement Diagnosis Method with Convolutional Neural Network Based on Adaptive Stochastic Resonance.
    Wang C; Qiao Z; Huang Z; Xu J; Fang S; Zhang C; Liu J; Zhu R; Lai Z
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433327
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network.
    Nguyen CD; Prosvirin AE; Kim CH; Kim JM
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. End-to-End Continuous/Discontinuous Feature Fusion Method with Attention for Rolling Bearing Fault Diagnosis.
    Zheng J; Liao J; Chen Z
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080947
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis.
    Hoang DT; Tran XT; Van M; Kang HJ
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data.
    Liu Y; Yan X; Zhang CA; Liu W
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31810161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Novel Deep Convolutional Neural Network Combining Global Feature Extraction and Detailed Feature Extraction for Bearing Compound Fault Diagnosis.
    Han S; Niu P; Luo S; Li Y; Zhen D; Feng G; Sun S
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fusion of Audio and Vibration Signals for Bearing Fault Diagnosis Based on a Quadratic Convolution Neural Network.
    Yan J; Liao JB; Gao JY; Zhang WW; Huang CM; Yu HL
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.