These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36359753)
21. Biorelevant media resistant co-culture model mimicking permeability of human intestine. Antoine D; Pellequer Y; Tempesta C; Lorscheidt S; Kettel B; Tamaddon L; Jannin V; Demarne F; Lamprecht A; Béduneau A Int J Pharm; 2015 Mar; 481(1-2):27-36. PubMed ID: 25601199 [TBL] [Abstract][Full Text] [Related]
22. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Cornu R; Chrétien C; Pellequer Y; Martin H; Béduneau A Arch Toxicol; 2020 Apr; 94(4):1191-1202. PubMed ID: 32162006 [TBL] [Abstract][Full Text] [Related]
23. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. Walter E; Janich S; Roessler BJ; Hilfinger JM; Amidon GL J Pharm Sci; 1996 Oct; 85(10):1070-6. PubMed ID: 8897273 [TBL] [Abstract][Full Text] [Related]
24. Ingested Engineered Nanomaterials Affect the Expression of Mucin Genes-An In Vitro-In Vivo Comparison. Bredeck G; Kämpfer AAM; Sofranko A; Wahle T; Büttner V; Albrecht C; Schins RPF Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685068 [TBL] [Abstract][Full Text] [Related]
25. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. Chen XM; Elisia I; Kitts DD J Pharmacol Toxicol Methods; 2010; 61(3):334-42. PubMed ID: 20159047 [TBL] [Abstract][Full Text] [Related]
26. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Akbari A; Lavasanifar A; Wu J Acta Biomater; 2017 Dec; 64():249-258. PubMed ID: 29030304 [TBL] [Abstract][Full Text] [Related]
27. In Vitro Intestinal Uptake And Permeability Of Fluorescently-Labelled Hyaluronic Acid Nanogels. Xavier M; García-Hevia L; Amado IR; Pastrana L; Gonçalves C Int J Nanomedicine; 2019; 14():9077-9088. PubMed ID: 31819420 [TBL] [Abstract][Full Text] [Related]
28. Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Domenech J; Hernández A; Demir E; Marcos R; Cortés C Sci Rep; 2020 Feb; 10(1):2793. PubMed ID: 32066787 [TBL] [Abstract][Full Text] [Related]
29. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Li N; Wang D; Sui Z; Qi X; Ji L; Wang X; Yang L Tissue Eng Part C Methods; 2013 Sep; 19(9):708-19. PubMed ID: 23350801 [TBL] [Abstract][Full Text] [Related]
30. SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats. Liu J; Werner U; Funke M; Besenius M; Saaby L; Fanø M; Mu H; Müllertz A Int J Pharm; 2019 Apr; 560():377-384. PubMed ID: 30790612 [TBL] [Abstract][Full Text] [Related]
31. A comparison of three Peyer's patch "M-like" cell culture models: particle uptake, bacterial interaction, and epithelial histology. Ahmad T; Gogarty M; Walsh EG; Brayden DJ Eur J Pharm Biopharm; 2017 Oct; 119():426-436. PubMed ID: 28754262 [TBL] [Abstract][Full Text] [Related]
33. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. Zhang Y; Xiong M; Ni X; Wang J; Rong H; Su Y; Yu S; Mohammad IS; Leung SSY; Hu H ACS Appl Mater Interfaces; 2021 Apr; 13(15):18077-18088. PubMed ID: 33830730 [TBL] [Abstract][Full Text] [Related]
34. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. Mahler GJ; Shuler ML; Glahn RP J Nutr Biochem; 2009 Jul; 20(7):494-502. PubMed ID: 18715773 [TBL] [Abstract][Full Text] [Related]
35. Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies. Pereira C; Araújo F; Barrias CC; Granja PL; Sarmento B Biomaterials; 2015 Jul; 56():36-45. PubMed ID: 25934277 [TBL] [Abstract][Full Text] [Related]
36. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. Gagnon M; Zihler Berner A; Chervet N; Chassard C; Lacroix C J Microbiol Methods; 2013 Sep; 94(3):274-9. PubMed ID: 23835135 [TBL] [Abstract][Full Text] [Related]
37. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Walczak AP; Kramer E; Hendriksen PJ; Helsdingen R; van der Zande M; Rietjens IM; Bouwmeester H Nanotoxicology; 2015; 9(7):886-94. PubMed ID: 25672814 [TBL] [Abstract][Full Text] [Related]
38. In vitro intestinal co-culture cell model to evaluate intestinal absorption of edelfosine lipid nanoparticles. Lasa-Saracíbar B; Guada M; Sebastián V; Blanco-Prieto MJ Curr Top Med Chem; 2014; 14(9):1124-32. PubMed ID: 24678709 [TBL] [Abstract][Full Text] [Related]
39. The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. Thwala LN; Beloqui A; Csaba NS; González-Touceda D; Tovar S; Dieguez C; Alonso MJ; Préat V J Control Release; 2016 Dec; 243():109-120. PubMed ID: 27720993 [TBL] [Abstract][Full Text] [Related]
40. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. Pontier C; Pachot J; Botham R; Lenfant B; Arnaud P J Pharm Sci; 2001 Oct; 90(10):1608-19. PubMed ID: 11745719 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]