These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
613 related articles for article (PubMed ID: 36359912)
1. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cvekl A; Camerino MJ Cells; 2022 Nov; 11(21):. PubMed ID: 36359912 [TBL] [Abstract][Full Text] [Related]
2. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. Yang C; Yang Y; Brennan L; Bouhassira EE; Kantorow M; Cvekl A FASEB J; 2010 Sep; 24(9):3274-83. PubMed ID: 20410439 [TBL] [Abstract][Full Text] [Related]
3. Generation of Functional Lentoid Bodies From Human Induced Pluripotent Stem Cells Derived From Urinary Cells. Fu Q; Qin Z; Jin X; Zhang L; Chen Z; He J; Ji J; Yao K Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):517-527. PubMed ID: 28125839 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Weatherbee BAT; Barton JR; Siddam AD; Anand D; Lachke SA Exp Eye Res; 2019 Nov; 188():107787. PubMed ID: 31479653 [TBL] [Abstract][Full Text] [Related]
5. Wnt5a Contributes to the Differentiation of Human Embryonic Stem Cells into Lentoid Bodies Through the Noncanonical Wnt/JNK Signaling Pathway. Han C; Li J; Wang C; Ouyang H; Ding X; Liu Y; Chen S; Luo L Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3449-3460. PubMed ID: 30025083 [TBL] [Abstract][Full Text] [Related]
6. Tissue-specific regulation of the mouse alphaA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter. Yang Y; Cvekl A J Mol Biol; 2005 Aug; 351(3):453-69. PubMed ID: 16023139 [TBL] [Abstract][Full Text] [Related]
7. Removal of Hsf4 leads to cataract development in mice through down-regulation of gamma S-crystallin and Bfsp expression. Shi X; Cui B; Wang Z; Weng L; Xu Z; Ma J; Xu G; Kong X; Hu L BMC Mol Biol; 2009 Feb; 10():10. PubMed ID: 19224648 [TBL] [Abstract][Full Text] [Related]
8. Differentiation and angiogenic growth factor message in two mammalian lens epithelial cell lines. Kidd GL; Reddan JR; Russell P Differentiation; 1994 Apr; 56(1-2):67-74. PubMed ID: 8026648 [TBL] [Abstract][Full Text] [Related]
9. Lens Development and Crystallin Gene Expression. Cvekl A; McGreal R; Liu W Prog Mol Biol Transl Sci; 2015; 134():129-67. PubMed ID: 26310154 [TBL] [Abstract][Full Text] [Related]
10. Generation and proteome profiling of PBMC-originated, iPSC-derived lentoid bodies. Ali M; Kabir F; Raskar S; Renuse S; Na CH; Delannoy M; Khan SY; Riazuddin SA Stem Cell Res; 2020 Jul; 46():101813. PubMed ID: 32474394 [TBL] [Abstract][Full Text] [Related]
11. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells. Anchan RM; Lachke SA; Gerami-Naini B; Lindsey J; Ng N; Naber C; Nickerson M; Cavallesco R; Rowan S; Eaton JL; Xi Q; Maas RL PLoS One; 2014; 9(12):e115106. PubMed ID: 25517354 [TBL] [Abstract][Full Text] [Related]
12. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. Cvekl A; Yang Y; Chauhan BK; Cveklova K Int J Dev Biol; 2004; 48(8-9):829-44. PubMed ID: 15558475 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies. Ali M; Kabir F; Thomson JJ; Ma Y; Qiu C; Delannoy M; Khan SY; Riazuddin SA Sci Rep; 2019 Dec; 9(1):18552. PubMed ID: 31811247 [TBL] [Abstract][Full Text] [Related]
14. Distinct roles of SOX2, Pax6 and Maf transcription factors in the regulation of lens-specific delta1-crystallin enhancer. Muta M; Kamachi Y; Yoshimoto A; Higashi Y; Kondoh H Genes Cells; 2002 Aug; 7(8):791-805. PubMed ID: 12167158 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes. Terrell AM; Anand D; Smith SF; Dang CA; Waters SM; Pathania M; Beebe DC; Lachke SA Exp Eye Res; 2015 Feb; 131():42-55. PubMed ID: 25530357 [TBL] [Abstract][Full Text] [Related]
16. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Chang W; Zhao Y; Rayêe D; Xie Q; Suzuki M; Zheng D; Cvekl A Epigenetics Chromatin; 2023 Jan; 16(1):4. PubMed ID: 36698218 [TBL] [Abstract][Full Text] [Related]
17. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Lachke SA Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599 [TBL] [Abstract][Full Text] [Related]
18. Transdifferentiated embryonic neuroretina cells: an in vitro system to study crystallin aggregation process. Pircher R; Lawrence DA; Lorinet AM; Simonneau L Exp Eye Res; 1987 Dec; 45(6):947-60. PubMed ID: 3428406 [TBL] [Abstract][Full Text] [Related]
19. Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract Murphy P; Kabir MH; Srivastava T; Mason ME; Dewi CU; Lim S; Yang A; Djordjevic D; Killingsworth MC; Ho JWK; Harman DG; O'Connor MD Development; 2018 Jan; 145(1):. PubMed ID: 29217756 [TBL] [Abstract][Full Text] [Related]
20. PKCalpha and PKCgamma overexpression causes lentoid body formation in the N/N 1003A rabbit lens epithelial cell line. Wagner LM; Takemoto DJ Mol Vis; 2001 Jun; 7():138-44. PubMed ID: 11436000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]