These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 36360296)

  • 1. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps.
    Mulye M; Singh MI; Jain V
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36360296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.
    Georgescu R; Langston L; O'Donnell M
    DNA Repair (Amst); 2015 May; 29():4-15. PubMed ID: 25704660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loading clamps for DNA replication and repair.
    Bloom LB
    DNA Repair (Amst); 2009 May; 8(5):570-8. PubMed ID: 19213612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases.
    Yao N; Turner J; Kelman Z; Stukenberg PT; Dean F; Shechter D; Pan ZQ; Hurwitz J; O'Donnell M
    Genes Cells; 1996 Jan; 1(1):101-13. PubMed ID: 9078370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution and origin of sliding clamp in bacteria, archaea and eukarya.
    Acharya S; Dahal A; Bhattarai HK
    PLoS One; 2021; 16(8):e0241093. PubMed ID: 34379636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication clamps and clamp loaders.
    Hedglin M; Kumar R; Benkovic SJ
    Cold Spring Harb Perspect Biol; 2013 Apr; 5(4):a010165. PubMed ID: 23545418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells.
    Su'etsugu M; Errington J
    Mol Cell; 2011 Mar; 41(6):720-32. PubMed ID: 21419346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of loading the Escherichia coli DNA polymerase processivity clamp.
    Bloom LB
    Crit Rev Biochem Mol Biol; 2006; 41(3):179-208. PubMed ID: 16760017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water skating: How polymerase sliding clamps move on DNA.
    Li H; Zheng F; O'Donnell M
    FEBS J; 2021 Dec; 288(24):7256-7262. PubMed ID: 33523561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herpesvirus DNA polymerase processivity factors: Not just for DNA synthesis.
    Cohan B; Frappier L
    Virus Res; 2021 Jun; 298():198394. PubMed ID: 33775751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of interactions with sliding clamps during DNA replication and repair.
    López de Saro FJ
    Curr Genomics; 2009 May; 10(3):206-15. PubMed ID: 19881914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a DNA polymerase sliding clamp from a Gram-positive bacterium.
    Argiriadi MA; Goedken ER; Bruck I; O'Donnell M; Kuriyan J
    BMC Struct Biol; 2006 Jan; 6():2. PubMed ID: 16403212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis.
    Zhuang Z; Ai Y
    Biochim Biophys Acta; 2010 May; 1804(5):1081-93. PubMed ID: 19576301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA sliding clamps: just the right twist to load onto DNA.
    Barsky D; Venclovas C
    Curr Biol; 2005 Dec; 15(24):R989-92. PubMed ID: 16360676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ring-type polymerase sliding clamp family.
    Bruck I; O'Donnell M
    Genome Biol; 2001; 2(1):REVIEWS3001. PubMed ID: 11178284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps.
    Kelman Z; O'Donnell M
    Nucleic Acids Res; 1995 Sep; 23(18):3613-20. PubMed ID: 7478986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair.
    López de Saro FJ; Georgescu RE; Goodman MF; O'Donnell M
    EMBO J; 2003 Dec; 22(23):6408-18. PubMed ID: 14633999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The UmuC subunit of the E. coli DNA polymerase V shows a unique interaction with the β-clamp processivity factor.
    Patoli AA; Winter JA; Bunting KA
    BMC Struct Biol; 2013 Jul; 13():12. PubMed ID: 23822808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clubbing together on clamps: The key to translesion synthesis.
    Lehmann AR
    DNA Repair (Amst); 2006 Mar; 5(3):404-7. PubMed ID: 16427367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replisome mechanics: insights into a twin DNA polymerase machine.
    Pomerantz RT; O'Donnell M
    Trends Microbiol; 2007 Apr; 15(4):156-64. PubMed ID: 17350265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.