These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36360511)

  • 1. Automated Bone Age Assessment: A New Three-Stage Assessment Method from Coarse to Fine.
    Xu X; Xu H; Li Z
    Healthcare (Basel); 2022 Oct; 10(11):. PubMed ID: 36360511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMANet: multi-region ensemble of convolutional neural network model for skeletal maturity assessment.
    Zhang Y; Zhu W; Li K; Yan D; Liu H; Bai J; Liu F; Cheng X; Wu T
    Quant Imaging Med Surg; 2022 Jul; 12(7):3556-3568. PubMed ID: 35782257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Skeletal Bone Age Assessment with Two-Stage Convolutional Transformer Network Based on X-ray Images.
    Mao X; Hui Q; Zhu S; Du W; Qiu C; Ouyang X; Kong D
    Diagnostics (Basel); 2023 May; 13(11):. PubMed ID: 37296689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of an AI-Powered Automated X-ray Bone Age Analyzer in Chinese Children and Adolescents: A Comparison with the Tanner-Whitehouse 3 Method.
    Liang Y; Chen X; Zheng R; Cheng X; Su Z; Wang X; Du H; Zhu M; Li G; Zhong Y; Cheng S; Yu B; Yang Y; Chen R; Cui L; Yao H; Gu Q; Gong C; Jun Z; Huang X; Liu D; Yan X; Wei H; Li Y; Zhang H; Liu Y; Wang F; Zhang G; Fan X; Dai H; Luo X
    Adv Ther; 2024 Sep; 41(9):3664-3677. PubMed ID: 39085749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone age assessment based on deep neural networks with annotation-free cascaded critical bone region extraction.
    Li Z; Chen W; Ju Y; Chen Y; Hou Z; Li X; Jiang Y
    Front Artif Intell; 2023; 6():1142895. PubMed ID: 36937708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic performance of convolutional neural network-based Tanner-Whitehouse 3 bone age assessment system.
    Zhou XL; Wang EG; Lin Q; Dong GP; Wu W; Huang K; Lai C; Yu G; Zhou HC; Ma XH; Jia X; Shi L; Zheng YS; Liu LX; Ha D; Ni H; Yang J; Fu JF
    Quant Imaging Med Surg; 2020 Mar; 10(3):657-667. PubMed ID: 32269926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-scale data fusion framework for bone age assessment with convolutional neural networks.
    Liu Y; Zhang C; Cheng J; Chen X; Wang ZJ
    Comput Biol Med; 2019 May; 108():161-173. PubMed ID: 31005008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Branch Attention Learning for Bone Age Assessment with Ambiguous Label.
    He B; Xu Z; Zhou D; Chen Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent Bone Age Assessment: An Automated System to Detect a Bone Growth Problem Using Convolutional Neural Networks with Attention Mechanism.
    Zulkifley MA; Mohamed NA; Abdani SR; Kamari NAM; Moubark AM; Ibrahim AA
    Diagnostics (Basel); 2021 Apr; 11(5):. PubMed ID: 33923215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporated region detection and classification using deep convolutional networks for bone age assessment.
    Bui TD; Lee JJ; Shin J
    Artif Intell Med; 2019 Jun; 97():1-8. PubMed ID: 31202395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of an established TW3 artificial intelligence bone age assessment system: a prospective, multicenter, confirmatory study.
    Liu Y; Ouyang L; Wu W; Zhou X; Huang K; Wang Z; Song C; Chen Q; Su Z; Zheng R; Wei Y; Lu W; Wu W; Liu Y; Yan Z; Wu Z; Fan J; Zhou M; Fu J
    Quant Imaging Med Surg; 2024 Jan; 14(1):144-159. PubMed ID: 38223047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal bone age prediction based on a deep residual network with spatial transformer.
    Han Y; Wang G
    Comput Methods Programs Biomed; 2020 Dec; 197():105754. PubMed ID: 32957059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Region fine-grained attention network for accurate bone age assessment.
    Deng Y; Song T; Wang X; Chen Y; Huang J
    Math Biosci Eng; 2024 Jan; 21(2):1857-1871. PubMed ID: 38454664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Edge-Based Selection Method for Improving Regions-of-Interest Localizations Obtained Using Multiple Deep Learning Object-Detection Models in Breast Ultrasound Images.
    Daoud MI; Al-Ali A; Alazrai R; Al-Najar MS; Alsaify BA; Ali MZ; Alouneh S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method.
    Liu J; Qi J; Liu Z; Ning Q; Luo X
    Comput Med Imaging Graph; 2008 Dec; 32(8):678-84. PubMed ID: 18835130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-grained classification of fly species in the natural environment based on deep convolutional neural network.
    Chen Y; Zhang X; Chen Z; Song M; Wang J
    Comput Biol Med; 2021 Aug; 135():104655. PubMed ID: 34304110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully Automated Bone Age Assessment on Large-Scale Hand X-Ray Dataset.
    Pan X; Zhao Y; Chen H; Wei D; Zhao C; Wei Z
    Int J Biomed Imaging; 2020; 2020():8460493. PubMed ID: 32190035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A real-time automated bone age assessment system based on the RUS-CHN method.
    Yang C; Dai W; Qin B; He X; Zhao W
    Front Endocrinol (Lausanne); 2023; 14():1073219. PubMed ID: 37008947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Automated Deep Learning System for Bone Age Assessment.
    Lee H; Tajmir S; Lee J; Zissen M; Yeshiwas BA; Alkasab TK; Choy G; Do S
    J Digit Imaging; 2017 Aug; 30(4):427-441. PubMed ID: 28275919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPANet-KD: Efficient progressive attention network for fine-grained provincial village classification via knowledge distillation.
    Zhang C; Liu C; Gong H; Teng J
    PLoS One; 2024; 19(2):e0298452. PubMed ID: 38359020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.