These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36360591)

  • 1. Image and Speech Recognition Technology in the Development of an Elderly Care Robot: Practical Issues Review and Improvement Strategies.
    Fahn CS; Chen SC; Wu PY; Chu TL; Li CH; Hsu DQ; Wang HH; Tsai HM
    Healthcare (Basel); 2022 Nov; 10(11):. PubMed ID: 36360591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research status of elderly-care robots and safe human-robot interaction methods.
    Zhao D; Sun X; Shan B; Yang Z; Yang J; Liu H; Jiang Y; Hiroshi Y
    Front Neurosci; 2023; 17():1291682. PubMed ID: 38099199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a Social Robot to Evaluate Facial Expressions in the Wild.
    Ramis S; Buades JM; Perales FJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Head Pose Variation Problem in Face Recognition for Mobile Robots.
    Baltanas SF; Ruiz-Sarmiento JR; Gonzalez-Jimenez J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Voice Recognition Informatic Robots for Effective Communication in Outpatient Settings.
    Meng Z; Liu H; Ma AC
    Cureus; 2023 Sep; 15(9):e44848. PubMed ID: 37809163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facial expression recognition based on deep learning.
    Ge H; Zhu Z; Dai Y; Wang B; Wu X
    Comput Methods Programs Biomed; 2022 Mar; 215():106621. PubMed ID: 35164903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ExGenNet: Learning to Generate Robotic Facial Expression Using Facial Expression Recognition.
    Rawal N; Koert D; Turan C; Kersting K; Peters J; Stock-Homburg R
    Front Robot AI; 2021; 8():730317. PubMed ID: 35059440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Preferred Appearance and Functional Requirements of Aged Care Robots Among Older Chinese Immigrants: Cross-Sectional Study.
    Chiu CJ; Lo YH; Montayre J; Abu-Odah H; Chen ML; Zhao IY
    JMIR Aging; 2023 Nov; 6():e48646. PubMed ID: 37986104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer.
    Melinte DO; Vladareanu L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional neural network-based pose mapping estimation as an alternative to traditional hand-eye calibration.
    Zhou K; Huang X; Li S; Li G
    Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting Three-Dimensional Gaze Tracking for Action Recognition During Bimanual Manipulation to Enhance Human-Robot Collaboration.
    Haji Fathaliyan A; Wang X; Santos VJ
    Front Robot AI; 2018; 5():25. PubMed ID: 33500912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scoping review on the use of socially assistive robot technology in elderly care.
    Abdi J; Al-Hindawi A; Ng T; Vizcaychipi MP
    BMJ Open; 2018 Feb; 8(2):e018815. PubMed ID: 29440212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Deep Learning Technology in Strength Training of Football Players and Field Line Detection of Football Robots.
    Zhou D; Chen G; Xu F
    Front Neurorobot; 2022; 16():867028. PubMed ID: 35845757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using telepresence robots as a tool to engage patient and family partners in dementia research during COVID-19 pandemic: a qualitative participatory study.
    Hung L; Lake C; Hussein A; Wong J; Mann J
    Res Involv Engagem; 2023 Mar; 9(1):12. PubMed ID: 36959683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-Related Differences in the Perception of Robotic Referential Gaze in Human-Robot Interaction.
    Morillo-Mendez L; Schrooten MGS; Loutfi A; Mozos OM
    Int J Soc Robot; 2022 Sep; ():1-13. PubMed ID: 36185773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Human-Robot Interaction by Enhancing NAO Robot Awareness of Human Facial Expression.
    Filippini C; Perpetuini D; Cardone D; Merla A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object Detection Method for Grasping Robot Based on Improved YOLOv5.
    Song Q; Li S; Bai Q; Yang J; Zhang X; Li Z; Duan Z
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Intelligent Multi-Floor Navigational System Based on Speech, Facial Recognition and Voice Broadcasting Using Internet of Things.
    Ullah M; Li X; Hassan MA; Ullah F; Muhammad Y; Granelli F; Vilcekova L; Sadad T
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Return Strategy and Machine Learning Optimization of Tennis Sports Robot for Human Motion Recognition.
    Wang Y; Yang X; Wang L; Hong Z; Zou W
    Front Neurorobot; 2022; 16():857595. PubMed ID: 35574231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.