These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 36360745)
1. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by Zeng G; He Y; Liang D; Wang F; Luo Y; Yang H; Wang Q; Wang J; Gao P; Wen X; Yu C; Sun D Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360745 [TBL] [Abstract][Full Text] [Related]
2. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
3. Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent. Maity S; Bajirao Patil P; SenSharma S; Sarkar A Chemosphere; 2022 Nov; 307(Pt 4):136115. PubMed ID: 35995185 [TBL] [Abstract][Full Text] [Related]
4. Investigation of cadmium and nickel biosorption by Pseudomonas sp. via response surface methodology. Hosseini Zabet A; Ahmady-Asbchin S World J Microbiol Biotechnol; 2023 Mar; 39(5):135. PubMed ID: 36961587 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal. Šehović E; Memić M; Sulejmanović J; Hameed M; Begić S; Ljubijankić N; Selović A; Ghfar AA; Sher F Chemosphere; 2022 Nov; 307(Pt 1):135737. PubMed ID: 35850218 [TBL] [Abstract][Full Text] [Related]
6. Waste tea residue adsorption coupled with electrocoagulation for improvement of copper and nickel ions removal from simulated wastewater. Jean Claude N; Shanshan L; Khan J; Yifeng W; Dongxu H; Xiangru L Sci Rep; 2022 Mar; 12(1):3519. PubMed ID: 35241732 [TBL] [Abstract][Full Text] [Related]
7. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan. Prakash N; Latha S; Sudha PN; Renganathan NG Environ Sci Pollut Res Int; 2013 Feb; 20(2):925-38. PubMed ID: 22565982 [TBL] [Abstract][Full Text] [Related]
8. Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution. Deng J; Fu D; Hu W; Lu X; Wu Y; Bryan H Bioresour Technol; 2020 May; 303():122963. PubMed ID: 32050124 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite. Chang YS; Au PI; Mubarak NM; Khalid M; Jagadish P; Walvekar R; Abdullah EC Environ Sci Pollut Res Int; 2020 Sep; 27(26):33270-33296. PubMed ID: 32529626 [TBL] [Abstract][Full Text] [Related]
10. New strategy to enhance heavy metal ions removal from synthetic wastewater by mercapto-functionalized hydrous manganese oxide via adsorption and membrane separation. Hezarjaribi M; Bakeri G; Sillanpää M; Chaichi MJ; Akbari S; Rahimpour A Environ Sci Pollut Res Int; 2021 Oct; 28(37):51808-51825. PubMed ID: 33990925 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous removal of lead, copper, cadmium, nickel, and cobalt heavy metal ions from the quinary system by Abies bornmulleriana cones. Oguz E Water Sci Technol; 2020 Dec; 82(12):3032-3046. PubMed ID: 33341791 [TBL] [Abstract][Full Text] [Related]
12. The efficiency of removing heavy metal ions from industrial electropolishing wastewater using natural materials. Charazińska S; Burszta-Adamiak E; Lochyński P Sci Rep; 2022 Oct; 12(1):17766. PubMed ID: 36273077 [TBL] [Abstract][Full Text] [Related]
13. Metal sequestration by Microcystis extracellular polymers: a promising path to greener water treatment. Momin SC; Pradhan RB; Nath J; Lalmuanzeli R; Kar A; Mehta SK Environ Sci Pollut Res Int; 2024 Feb; 31(7):11192-11213. PubMed ID: 38217816 [TBL] [Abstract][Full Text] [Related]
14. Study of synergistic effects induced by novel base composites on heavy metals removal and pathogen inactivation. Nisa ZU; Zulfiqar S; Fazal A; Sajid M; Khalid A; Mehmood Z; Othman SI; Abukhadra MR Chemosphere; 2023 Nov; 340():139718. PubMed ID: 37567273 [TBL] [Abstract][Full Text] [Related]
15. Novel diaminoguanidine functionalized cellulose: synthesis, characterization, adsorption characteristics and application for ICP-AES determination of copper(II), mercury(II), lead(II) and cadmium(II) from aqueous solutions. Akl MA; Hashem MA; Ismail MA; Abdelgalil DA BMC Chem; 2022 Aug; 16(1):65. PubMed ID: 36042477 [TBL] [Abstract][Full Text] [Related]
16. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Lal Homagai P; Ghimire KN; Inoue K Bioresour Technol; 2010 Mar; 101(6):2067-9. PubMed ID: 20006923 [TBL] [Abstract][Full Text] [Related]
17. Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Prakash N; Sudha PN; Renganathan NG Environ Sci Pollut Res Int; 2011 Aug; 19(7):2930-41. PubMed ID: 22359148 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous removal of heavy metals and dye from wastewater: modelling and experimental study. ; Agarwal M; Singh K Water Sci Technol; 2023 Jan; 87(1):193-217. PubMed ID: 36640032 [TBL] [Abstract][Full Text] [Related]
19. Development of a new adsorbent from pumpkin husk by KOH-modification to remove copper ions. Çelekli A; Bozkuş B; Bozkurt H Environ Sci Pollut Res Int; 2019 Apr; 26(12):11514-11523. PubMed ID: 29423689 [TBL] [Abstract][Full Text] [Related]
20. Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macro algae Cystoseira barbata. Yalçın S; Sezer S; Apak R Environ Sci Pollut Res Int; 2012 Sep; 19(8):3118-25. PubMed ID: 22875422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]